Skip to main content
Log in

Tailoring the Crystallization Behavior and Mechanical Property of Poly(glycolic acid) by Self-nucleation

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Biocompostable poly(glycolic acid) (PGA) crystallizes slowly under fast cooling condition, leading to poor mechanical performance of the final products. In this work, a self-nucleation (SN) route was carried out to promote the crystallization of PGA by regulating only the thermal procedure without any extra nucleating agents. When self-nucleation temperature (Ts) decreased from 250 °C to 227 °C, the nuclei density was increased, and the non-isothermal crystallization temperature (Tc) of PGA was increased from 156 °C to 197 °C and the half-life time (t0.5) of isothermal crystallization at 207 °C was decreased by 89%. Consequently, the tensile strength and the elongation at break of the PGA were increased by 12% and 189%, respectively. According to the change of Tc as a function of Ts, a three-stage temperature domain map (Domain I, II and III) was protracted and the viscoelastic behavior of the self-nucleation melt and the homogeneous melt was studied. The results indicated that interaction among PGA chains was remained in Domain IIb, which can act as pre-ordered structure to accelerate the overall crystallization rate. This work utilizes a simple and effective SN method to regulate the crystallization behavior and the mechanical properties of PGA, which may broaden the application range of resulting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, B.; Zeng, Q.; Niu, D.; Yang, W.; Dong, W.; Chen, M.; Ma, P. Design of supertoughened and heat-resistant PLLA/elastomer blends by controlling the distribution of stereocomplex crystallites and the morphology. Macromolecules 2019, 52, 1092–1103.

    Article  Google Scholar 

  2. Zhu, L.; Qiu, J.; Liu, W.; Sakai, E. Mechanical and thermal properties of rice straw/PLA modified by nano attapulgite/PLA interfacial layer. Compos. Commun. 2019, 13, 18–21.

    Article  Google Scholar 

  3. Georgiopoulos, P.; Kontou, E.; Georgousis, G. Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos. Commun. 2018, 10, 6–10.

    Article  Google Scholar 

  4. Wu, B.; Yang, W.; Niu, D.; Dong, W.; Chen, M.; Liu, T.; Du, M.; Ma, P. Stereocomplexed poly(lactide) composites toward engineering plastics with superior toughness, heat resistance and antihydrolysis. Chinese J. Polym. Sai. 2020, 38, 1107–1116.

    Article  CAS  Google Scholar 

  5. Zhang, J.; Yang, S.; Yang, X.; Xi, Z.; Zhao, L.; Cen, L.; Lu, E.; Yang, Y. Novel fabricating process for porous polyglycolic acid scaffolds by melt-foaming using supercritical carbon dioxide. CCS Biomater. Sai. Eng. 2017, 4, 694–706.

    Article  Google Scholar 

  6. Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym. J. 2014, 46, 769–775.

    Article  CAS  Google Scholar 

  7. Belenkaya, B. G.; Sakharova, V. I.; Sinevich, E. A.; Belousov, S. I.; Kuptsov, A. H.; Chvalun, S. N. Kinetics and mechanism of biodegradation of (co)polyglycolide sutures. Maaromol. Symp. 2015, 144, 187–199.

    Article  Google Scholar 

  8. Oca, H.; Farrar, D. F.; Ward, I. M. Degradation studies on highly oriented poly(glycolic acid) fibres with different lamellar structures. Acta Biomater. 2012, 7, 1535–1541.

    Google Scholar 

  9. Yu, C.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y.; Pan, P. Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated via temperature-variable WAXD and FTIR analysis. CrystEngComm 2016, 18, 7894–7902.

    Article  CAS  Google Scholar 

  10. Xu, P.; Cui, Z.; Ruan, G.; Ding, Y. Enhanced crystallization kinetics of PLLA by ethoxycarbonyl ionic liquid modified graphene. Chinese J. Polym. Sai. 2019, 37, 243–252.

    Article  CAS  Google Scholar 

  11. Jiang, L.; Shen, T.; Xu, P.; Zhao, X.; Li, X.; Dong, W.; Ma, P.; Chen, M. Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. e-Polymers 2016, 16, 1–13.

    Article  Google Scholar 

  12. Wang, M.; You, L.; Guo, Y.; Jiang, N.; Gan, Z.; Ning, Z. Enhanced crystallization rate of poly(L-lactide)/hydroxyapatite-graft-poly(D-lactide) composite with different processing temperatures. Chinese J. Polym. Sci. 2020, 38, 599–610.

    Article  CAS  Google Scholar 

  13. Teng, S.; Jiang, Z.; Qiu, Z. Crystallization behavior and dynamic mechanical properties of poly(t-caprolactone)/octaisobutyl-polyhedral oligomeric silsesquioxanes composites prepared via different methods. Chinese J. Polym. Sci. 2020, 38, 158–163.

    Article  CAS  Google Scholar 

  14. Xu, P.; Ma, P.; Cai, X.; Song, S.; Zhang, Y.; Dong, W.; Chen, M. Selectively cross-linked poly(lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances. Eur. Polym. J. 2016, 84, 1–12.

    Article  CAS  Google Scholar 

  15. Bosq, N.; Aht-Ong, D. Isothermal and non-isothermal crystallization kinetics of poly(butylene succinate) with nanoprecipitated calcium carbonate as nucleating agent. J. Therm. Anal. Calorim. 2018, 132, 233–249.

    Article  CAS  Google Scholar 

  16. Shazleen, S. S.; Yasimanuar, T.; Ibrahim, N. A.; Hassan, M. A.; Ariffin, H. Functionality of cellulose nanofiber as bio-based nucleating agent and nano-reinforcement material to enhance crystallization and mechanical properties of polylactic acid nanocomposite. Polymers 2021, 13, 389.

    Article  CAS  Google Scholar 

  17. Jacquel, N.; Tajima, K.; Nakamura, N.; Miyagawa, T.; Pan, P.; Inoue, Y. Effect of orotic acid as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers. J. Appl. Polym. Sci. 2010, 114, 1287–1294.

    Article  Google Scholar 

  18. Fillon, B.; Wittmann, J. C.; Lotz, B.; Thierry, A. Self-nucleation and recrystallization of isotactic polypropylene (a phase) investigated by differential scanning calorimetry. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1383–1393.

    Article  CAS  Google Scholar 

  19. Sangroniz, L.; Barbieri, F.; Cavallo, D.; Santamaria, A.; Alamo, R. G.; Müller, A. J. Rheology of self-nucleated poly(ε-caprolactone) melts. Eur. Polym. J. 2018, 99, 495–503.

    Article  CAS  Google Scholar 

  20. Sangroniz, L.; Cavallo, D.; Santamaria, A.; Müller, A. J.; Alamo, R. G. Thermorheologically complex self-seeded melts of propylene-ethylene copolymers. Macromolecules 2017, 50, 642–651.

    Article  CAS  Google Scholar 

  21. Jiang, J.; Zhuravlev, E.; Hu, W.; Schick, C.; Zhou, D. The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry. Chinese J. Polym. Sci. 2017, 35, 1009–1019.

    Article  CAS  Google Scholar 

  22. Lorenzo, A. T.; Arnal, M. L.; Sánchez, J.; Müller, A. J. Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1738–1750.

    Article  CAS  Google Scholar 

  23. Hu, D.; Ye, S.; Yu, F.; Feng, J. Further understanding on the three domains of isotactic polypropylene by investigating the crystalline morphologies evolution after treatment at different domains. Chinese J. Polym. Sci. 2016, 34, 344–358.

    Article  CAS  Google Scholar 

  24. Michell, R. M.; Mugica, A.; Zubitur, M.; Müller, A. J. in Polymer Crystallization I, Springer, germany, 2015, p. 215.

    Book  Google Scholar 

  25. Chen, X.; Qu, C.; Alamo, R. G. Effect of annealing time and molecular weight on melt memory of random ethylene 1-butene copolymers. Polym. Int. 2018, 68, 248–256.

    Article  Google Scholar 

  26. Reid, B. O.; Vadlamudi, M.; Mamun, A.; Janani, H.; Gao, H.; Hu, W.; Alamo, R. G. Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 2013, 46, 6485–6497.

    Article  CAS  Google Scholar 

  27. Pérez, R.; Córdova, M.; López, J.; Hoskins, J. N.; Müller, A. J. Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s. React. Funct. Polym. 2013, 80, 71–82.

    Article  Google Scholar 

  28. Luo, C.; Sommer, J. U. Frozen topology: entanglements control nucleation and crystallization in polymers. Phys. Rev. Lett. 2014, 112, 195702.

    Article  Google Scholar 

  29. Pan, Y.; Yu, X.; Shi, T.; An, L. Nucleation and crystallization of H-shaped (PS)2PEG(PS) 2 block copolymers. Chinese J. Polym. Sci. 2010, 28, 347–355.

    Article  CAS  Google Scholar 

  30. Sangroniz, L.; Cavallo, D.; Müller, A. J. Self-nucleation effects on polymer crystallization. Macromolecules 2020, 53, 4581–4604.

    Article  CAS  Google Scholar 

  31. Shen, T.; Xu, Y.; Cai, X.; Ma, P.; Dong, W.; Chen, M. Enhanced crystallization kinetics of poly(lactide) with oxalamide compounds as nucleators: effect of spacer length between the oxalamide moieties. RSCAdv. 2016, 6, 48365–48374.

    CAS  Google Scholar 

  32. Marxsen, S. F.; Alamo, R. G. Melt-memory of polyethylenes with halogen substitution: random vs. precise placement. Polymer 2019, 168, 168–177.

    Article  CAS  Google Scholar 

  33. Liu, S.; Yang, J.; Liu, Q.; Huang, Y.; Kong, M.; Yang, Q.; Li, G. Polydopamine particles as a β-nucleating agent and antioxidant for isotactic polypropylene. Chem. Eng. J. 2019, 363, 1–12.

    Article  CAS  Google Scholar 

  34. Hobbs, J. K.; McMaster, T. J.; Miles, M. J.; Barham, P. J. Cracking in spherulites of poly(hydroxybutyrate). Polymer 1996, 37, 3241–3246.

    Article  CAS  Google Scholar 

  35. Liu, X.; Wang, Y.; Wang, Z.; Cavallo, D.; Müller, A. J.; Zhu, P.; Zhao, Y.; Dong, X.; Wang, D. The origin of memory effects in the crystallization of polyamides: Role of hydrogen bonding. Polymer 2020, 188, 122117.

    Article  CAS  Google Scholar 

  36. Sangroniz, L.; Alamo, R. G.; Cavallo, D.; Santamaría, A.; Müller, A. J.; Alegría, A. Differences between isotropic and self-nucleated PCL melts detected by dielectric experiments. Macromolecules 2018, 51, 3663–3671.

    Article  CAS  Google Scholar 

  37. Liang, H.; Hao, Y.; Bian, J.; Zhang, H.; Dong, L.; Zhang, H. Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends. Polym. Eng. Sci. 2015, 55, 386–396.

    Article  CAS  Google Scholar 

  38. Li, J.; Jiang, Z.; Qiu, Z. Isothermal melt crystallization kinetics study of cellulose nanocrystals nucleated biodegradable poly(ethylene succinate). Polymer 2021, 227, 123869.

    Article  CAS  Google Scholar 

  39. Mamun, A.; Umemoto, S.; Okui, N. Self-seeding effect on primary nucleation of isotactic polystyrene. Macromolecules 2007, 40, 6296–6303.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873082, 52073123 and 52103032), the Distinguished Young Natural Science Foundation of Jiangsu Province (No. BK20200027), and the Natural Science Foundation of Jiangsu Province (No. BK20200606).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Wu Xu or Pi-Ming Ma.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JX., Niu, DY., Xu, PW. et al. Tailoring the Crystallization Behavior and Mechanical Property of Poly(glycolic acid) by Self-nucleation. Chin J Polym Sci 40, 365–372 (2022). https://doi.org/10.1007/s10118-022-2671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2671-y

Keywords

Navigation