Skip to main content
Log in

Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

To investigate the performance of graphene (Gra) modified with ethoxycarbonyl ionic liquid (IL), chain mobility and crystallization kinetics of poly(L-lactic acid) (PLLA), a series of PLLA nanocomposites have been prepared using solution-cast method. IL can improve the dispersion of Gra in PLLA matrix and the samples containing IL have higher growth rate of PLLA spherulite than neat PLLA does. PLLA/IL/Gra and PLLA/2Gra exhibit the same relaxation strength and time of αN relaxation that corresponds to the longest normal mode motion at 110−140 °C. PLLA/IL/Gra shows a faster crystallization rate than PLLA/2Gra does, which might be attributed to the Gra-imidazolium cation interaction in IL modified Gra, the significant dispersion effect of IL at Gra surface, and the increase of nuclei density of PLLA/IL/Gra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455–482.

    Article  CAS  Google Scholar 

  2. Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 23, 1841–1846.

    Article  Google Scholar 

  3. Proikakis, C. S.; Mamouzelos, N. J.; Tarantili, P. A.; Andreopoulos, A. G. Swelling and hydrolytic degradation of poly(D, L-lactic acid) in aqueous solutions. Polym. Degrad. Stab. 2006, 91, 614–619.

    Article  CAS  Google Scholar 

  4. Hiljanen-Vainio, M.; Varpomaa, P.; Seppälä, J.; Törmälä, P. Modification of poly(L-lactides) by blending: Mechanical and hydrolytic behavior. Macromol. Chem. Phys. 1996, 197, 1503–1523.

    Article  CAS  Google Scholar 

  5. Aou, K.; Hsu, S. L.; Kleiner, L. W.; Tang, F. W. Roles of Conformational and configurational defects on the physical aging of amorphous poly(lactic acid). J. Phys. Chem. B 2007, 111, 12322–12327.

    Article  CAS  Google Scholar 

  6. Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677.

    Article  CAS  Google Scholar 

  7. Xing, Q.; Li, R. B.; Dong, X.; Zhang, X. Q.; Zhang, L. Y.; Wang, D. J. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: Effect of composition and hard segment ratio. Chinese J. Polym. Sci. 2015, 33, 1294–1304.

    Article  CAS  Google Scholar 

  8. Yang, G.; Gao, Q.; Ouyang, C. F.; Zheng, K. S.; Guo, Y. Influence of nucleating agent on PLLA crystalline and mechanical properties. Adv. Mater. Res. 2013, 624, 269–273.

    Article  CAS  Google Scholar 

  9. Xing, Q.; Li, R. B.; Dong, X.; Luo, F. L.; Kuang, X.; Wang, D. J.; Zhang, L. Y. Enhanced crystallization rate of poly(L-lactide) mediated by a hydrazide compound: Nucleating mechanism study. Macromol. Chem. Phys. 2015, 10, 1134–1145.

    Article  CAS  Google Scholar 

  10. Shi, H.; Chen, X.; Chen, W. K.; Pang, S. J.; Pan, L. S.; Xu, N.; Li, T. Crystallization behavior, heat resistance, and mechanical performances of PLLA/myo-inositol blends. J. Appl. Polym. Sci. 2017, 134, 44732.

    Google Scholar 

  11. Xing, Q.; Li, R. B.; Zhang, X. Q.; Dong, X.; Wang, D. J.; Zhang, L. Y. Tailoring crystallization behavior of poly(Llactide) with a low molecular weight aliphatic amide. Colloid Polym. Sci. 2015, 293, 3573–3583.

    Article  CAS  Google Scholar 

  12. Chen, L.; Hou, X.; Song, N.; Shi, L.; Ding, P. Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Compos. Part A: Appl. S. 2018, 107, 189–196.

    Article  CAS  Google Scholar 

  13. Xu, J. Z.; Chen, T.; Yang, C. L.; Li, Z. M.; Mao, Y. M.; Zeng, B. Q.; Hsiao, B. S. Isothermal crystallization of poly(L-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 2010, 43, 5000–5008.

    Article  CAS  Google Scholar 

  14. Liang, Y. Y.; Yang, S.; Jiang, X.; Zhong, G. J.; Xu, J. Z.; Li, Z. M. Nucleation ability of thermally reduced graphene oxide for polylactide: Role of size and structural integrity. J. Phys. Chem. B 2015, 119, 4777–4787.

    Article  CAS  PubMed  Google Scholar 

  15. Papageorgiou, G. Z.; Terzopoulou, Z.; Bikiaris, D.; Triantafyllidis, K. S.; Diamanti, E.; Gournis, D.; Pissis, P. Evaluation of the formed interface in biodegradable poly(L-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochim. Acta 2014, 597, 48–57.

    Article  CAS  Google Scholar 

  16. Manafi, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Ehsaninamin, P. Effect of graphene nanoplatelets on crystallization kinetics of poly(lactic acid). Soft Mater 2014, 12, 433–444.

    Article  CAS  Google Scholar 

  17. Huang, H. D.; Xu, J. Z.; Fan, Y.; Xu, L.; Li, Z. M. Poly(L-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J. Phys. Chem. B 2013, 117, 10641–10651.

    Article  CAS  PubMed  Google Scholar 

  18. Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150.

    Article  CAS  PubMed  Google Scholar 

  19. Armand, M.; Endres, F.; Macfarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.

    Article  CAS  PubMed  Google Scholar 

  20. Rogers, R. D.; Seddon, K. R. Ionic liquids-solvents of the future? Science 2003, 5646, 792–793.

    Article  Google Scholar 

  21. Scott, M. P.; Brazel, C. S.; Benton, M. G.; Mays, J. W.; Holbrey, J. D.; Rogers, R. D. Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem. Commun. 2002, 13, 1370–1371.

    Article  CAS  Google Scholar 

  22. Gui, H.; Li, Y.; Chen, S.; Xu, P.; Zheng, B.; Ding, Y. Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA. Macrool. Res. 2014, Tl, 583–591.

    Google Scholar 

  23. Leng, J.; Purohit, P. J.; Kang, N.; Wang, D. Y.; Falkenhagen, J.; Emmerling, F. Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. Eur. Polym. J. 2015, 68, 338–354.

    Article  CAS  Google Scholar 

  24. Saiter, A.; Delpouve, N.; Dargent, E.; Oberhauser, W.; Conzatti, L.; Cicogna, F.; Passaglia, E. Probing the chain segment mobility at the interface of semi-crystalline polylactide/clay nanocomposites. Eur. Polym. J. 2016, 78, 274–289.

    Article  CAS  Google Scholar 

  25. Klonos, P.; Terzopoulou, Z.; Koutsoumpis, S.; Zidropoulos, S.; Kripotou, S.; Papageorgiou, G. Z.; Pissis, P. Rigid amorphous fraction and segmental dynamics in nanocomposites based on poly(L-lactic acid) and nano-inclusions of 1–3D geometry studied by thermal and dielectric techniques. Eur. Polym. J. 2016, 82, 16–34.

    Article  CAS  Google Scholar 

  26. Xu, P.; Gui, H. G.; Yang, S. Z.; Ding, Y. S.; Hao, Q. Dielectric and conductivity properties of poly(L-lactide) and poly(Llactide)/ ionic liquid blends. Macromol. Res. 2014, ll, 304–309.

    Google Scholar 

  27. Zhao, Y.; Hu, Z. Graphene in ionic liquids: Collective van der Waals interaction and hindrance of self-assembly pathway. J. Phys. Chem. B 2013, 36, 10540–10547.

    Article  CAS  Google Scholar 

  28. Saxena, A. P.; Deepa, M.; Joshi, A. G.; Bhandari, S.; Srivastava, A. K. Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: Improved conduction and electrochromism. ACS Appl. Mater. Interface 2011, 4,1115–1126.

    Google Scholar 

  29. Lu, J.; Yang, J. X.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 8, 2367.

    Article  CAS  Google Scholar 

  30. Li, Y.; Wang, Y.; Liu, L.; Han, L.; Xiang, F.; Zhou, Z. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 326–339.

    Article  CAS  Google Scholar 

  31. Xu, J. Z.; Zhang, Z. J.; Xu, H.; Chen, J. B.; Ran, R.; Li, Z. M. Highly enhanced crystallization kinetics of poly(L-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 2015, 48, 4891–4900.

    Article  CAS  Google Scholar 

  32. Li, Y.; Wu, H.; Wang, Y.; Liu, L.; Han, L.; Wu, J.; Xiang, F. Synergistic effects of PEG and MWCNTs on crystallization behavior of PLLA. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 520–528.

    Article  CAS  Google Scholar 

  33. Androsch, R.; Iqbal, H. N.; Schick, C. Non-isothermal crystal nucleation of poly (L-lactic acid). Polymer 2015, 81,151–158.

    Google Scholar 

  34. Brüster, B.; Montesinos, A.; Reumaux, P.; Pérez-Camargo, R. A.; Mugica, A.; Zubitur, M.; Addiego, F. Crystallization kinetics of polylactide: Reactive plasticization and reprocessing effects. Polym. Degrad. Stab. 2018,148, 56–66.

    Article  CAS  Google Scholar 

  35. Hu, Y.; Xu, P.; Gui, H.; Yang, S.; Ding, Y. Effect of graphene modified by a long alkyl chain ionic liquid on crystallization kinetics behavior of poly(vinylidene fluoride). RSC Adv. 2015, 112, 92418–92427.

    Article  CAS  Google Scholar 

  36. Chen, H. M.; Du, X. C.; Yang, A. S.; Yang, J. H.; Huang, T.; Zhang, N.; Zhang, C. L. Effect of graphene oxides on thermal degradation and crystallization behavior of poly(L-lactide). RSC Adv. 2014, 7, 3443–3456.

    Article  Google Scholar 

  37. Wei, T.; Pang, S.; Xu, N.; Pan, L.; Zhang, Z.; Xu, R.; Lin, Q. Crystallization behavior and isothermal crystallization kinetics of PLLA blended with ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate. J. Appl. Polym. Sci. 2015, 132, 41308.

    Google Scholar 

  38. Schick, C. Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 2009, 395, 1589–1611.

    Article  CAS  PubMed  Google Scholar 

  39. Wu, D.; Cheng, Y.; Feng, S.; Yao, Z.; Zhang, M. Crystallization behavior of polylactide/graphene composites. Ind. Eng. Chem. Res. 2013, 52, 6731–6739.

    Article  CAS  Google Scholar 

  40. Xiao, H.; Lu, W.; Yeh, J. T. Effect of plasticizer on the crystallization behavior of poly(lactic acid). J. Appl. Polym. Sci. 2009, 113, 112–121.

    Article  CAS  Google Scholar 

  41. Zhao, Y.; Qiu, Z.; Yang, W. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J. Phys. Chem. B 2008, 112, 16461–16468.

    Google Scholar 

  42. Mijovic, J.; Sy, J. W. Molecular dynamics during crystallization of poly(L-lactic acid) as studied by broad-band dielectric relaxation spectroscopy. Macromolecules 2002, 35, 6370–6376.

    Article  CAS  Google Scholar 

  43. Jeszka, J. K.; Pietrzak, L.; Pluta, M.; Boiteux, G. Dielectric properties of polylactides and their nanocomposites with montmorillonite. J. Non-Cryst. Solids 2010, 356, 818–821.

    Article  CAS  Google Scholar 

  44. Brás, A. R.; Viciosa, M. T.; Wang, Y.; Dionísio, M.; Mano, J. F. Crystallization of poly(L-lactic acid) probed with dielectric relaxation spectroscopy. Macromolecules 2006, 39, 6513–6520.

    Article  CAS  Google Scholar 

  45. Klonos, P.; Kripotou, S.; Kyritsis, A.; Papageorgiou, G. Z.; Bikiaris, D.; Gournis, D.; Pissis, P. Glass transition and segmental dynamics in poly(L-lactic acid)/graphene oxide nanocomposites. Thermochim. Acta 2015, 617, 44–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51603060) and the Fundamental Research Funds for the Central Universities (No. JZ2017YYPY0250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Xu or Yun-Sheng Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Cui, ZP., Ruan, G. et al. Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene. Chin J Polym Sci 37, 243–252 (2019). https://doi.org/10.1007/s10118-019-2192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2192-5

Keywords

Navigation