Skip to main content
Log in

Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-isothermal crystallization kinetics of polypropylene (PP)/polytetrafluoroethylene (PTFE) fibrillated composites is presented. In-situ fibrillated PP/PTFE-composites containing 1 and 3 wt% PTFE were prepared by melt compounding using a twin-screw extruder. The morphology and non-isothermal crystallization behavior of the composites were examined using scanning electron microscopy and differential scanning calorimetry, respectively. The Mo equation was used to analyze the kinetics of non-isothermal crystallization behavior. The PTFE created a three-dimensional (3-D) network. A low PTFE content promoted crystallization through fast nucleation, whereas a high PTFE content decreased the crystallization kinetics through hindering the crystal growth. These findings are all based on the Mo equation analysis. The activation energy and nucleation activity were also evaluated, and the way in which the PTFE nanofibers affected the crystallization was discussed in detail. Polarized optical microscopy images revealed that the size of PP spherulites decreased with the increase of PTFE content. Finally, the effect of PTFE on the crystalline phase of PP was investigated by wide angle X-ray diffraction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Leaversuch RD (1996) Enhanced PP resins offer a wide balance of properties Modern plastics USA 26(7):46–49

  2. Naguib HE, Park CB, Reichelt N (2004) Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. J Appl Polym Sci 91:2661–2668

    CAS  Google Scholar 

  3. Bao J-B, Junior AN, Weng G-S, Wang J, Fang Y-W, Hu G-H (2016) Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide. J Supercrits Fluids 111:63–73

    CAS  Google Scholar 

  4. Fu D, Chen F, Kuang T, Li D, Peng X, Chiu DY, Lin CS, Lee LJ (2016) Supercritical CO2 foaming of pressure-induced-flow processed linear polypropylene. Mater Des 93:509–513

    CAS  Google Scholar 

  5. Ali MABM, Nobukawa S, Yamaguchi M (2011) Morphology development of polytetrafluoroethylene in a polypropylene melt (IUPAC Technical report). Pure Appl Chem 83:1819–1830

    Google Scholar 

  6. Jurczuk K, Galeski A, Piorkowska E (2013) All-polymer nanocomposites with nanofibrillar inclusions generated in situ during compounding. Polymer 54:4617–4628

    CAS  Google Scholar 

  7. Rizvi A, Tabatabaei A, Barzegari MR, Mahmood SH, Park CB (2013) In situ fibrillation of CO 2-philic polymers: sustainable route to polymer foams in a continuous process. Polymer 54:4645–4652

    CAS  Google Scholar 

  8. Wang K, Wu F, Zhai W, Zheng W (2013) Effect of polytetrafluoroethylene on the foaming behaviors of linear polypropylene in continuous extrusion. J Appl Polym Sci 129:2253–2260

    CAS  Google Scholar 

  9. Jurczuk K, Galeski A, Piorkowska E (2014) Strain hardening of molten thermoplastic polymers reinforced with poly (tetrafluoroethylene) nanofibers. J Rheol 58:589–605

    CAS  Google Scholar 

  10. Miyamoto R, Utano T, Yasuhara S, Ishihara S, Ohshima M 2015 Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams, In AIP Conference proceedings, 040001

  11. Jurczuk K, Galeski A (2016) Thermoplastic elastomers reinforced with poly (tetrafluoroethylene) nanofibers. Eur Polym J 80:58–69

    CAS  Google Scholar 

  12. Peng X-F, Li K-C, Mi H-Y, Jing X, Chen B-Y (2016) Excellent properties and extrusion foaming behavior of PPC/PS/PTFE composites with an in situ fibrillated PTFE nanofibrillar network. RSC Adv 6:3176–3185

    CAS  Google Scholar 

  13. van der Meer DW, Milazzo D, Sanguineti A, Vancso GJ (2005) Oriented crystallization and mechanical properties of polypropylene nucleated on fibrillated polytetrafluoroethylene scaffolds. Polym Eng Sci 45:458–468

    Google Scholar 

  14. Yamaguchi M, Yokohara T, Ali MABM (2013) Effect of flexible fibers on rheological properties of poly (lactic acid) composites under elongational flow. Nihon Reoroji Gakkaishi 41:129–135

    CAS  Google Scholar 

  15. Ali M, Bin MA, Okamoto K, Yamaguchi M, Kasai T, Koshirai A (2009) Rheological properties for polypropylene modified by polytetrafluoroethylene. J Polym Sci, Part B: Polym Phys 47:2008–2014

    Google Scholar 

  16. Rizvi A 2015 Functional polymer foams from in-situ fibrillated polymer blends University of Toronto

  17. Jurczuk K, Galeski A, Morawiec J (2017) Effect of poly (tetrafluoroethylene) nanofibers on foaming behavior of linear and branched polypropylenes. Eur Polym J 88:171–182

    CAS  Google Scholar 

  18. Zhao J, Zhao Q, Wang C, Guo B, Park CB, Wang G (2017) High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Mater Des 131:1–11

    CAS  Google Scholar 

  19. Taki K, Kitano D, Ohshima M (2011) Effect of growing crystalline phase on bubble nucleation in poly (L-lactide)/CO2 batch foaming. Ind Eng Chem Res 50:3247–3252

    CAS  Google Scholar 

  20. Wong A, Guo Y, Park CB (2013) Fundamental mechanisms of cell nucleation in polypropylene foaming with supercritical carbon dioxide—effects of extensional stresses and crystals. J Supercrit Fluids 79:142–151

    CAS  Google Scholar 

  21. Nofar M, Guo Y, Park CB (2013) Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Ind Eng Chem Res 52:2297–2303

    CAS  Google Scholar 

  22. Wittmann JC, Smith P (1991) Highly oriented thin films of poly (tetrafluoroethylene) as a substrate for oriented growth of materials. Nature 352:414–417

    CAS  Google Scholar 

  23. Yan S, Katzenberg F, Petermann J, Yang D, Shen Y, Straupe C, Wittmann J, Lotz B (2000) A novel epitaxy of isotactic polypropylene (α phase) on PTFE and organic substrates. Polymer 41:2613–2625

    CAS  Google Scholar 

  24. Frey H, Sheiko S, Möller M, Wittmann JC, Lot B (1993) Highly oriented poly (di-n-alkylsilylene) films on oriented PTFE substrates. Adv Mater 5:917–919

    CAS  Google Scholar 

  25. Wang C, Hwang L (1996) Transcrystallization of PTFE fiber/PP composites (I) crystallization kinetics and morphology. J Polym Sci Part B Polym Phys 34:47–56

    CAS  Google Scholar 

  26. Wang C, Hwang L (1996) Transcrystallization of PTFE fiber/PP composites II effect of transcrystallinity on the interfacial strength. J Polym Sci Part B Polym Phys 34:1435–1442

    CAS  Google Scholar 

  27. Sowinski P, Piorkowska E, Boyer SAE, Haudin JM (2016) Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur Polym J 85:564–574

    CAS  Google Scholar 

  28. Kuang T, Li K, Chen B, Peng X (2017) Poly (propylene carbonate)-based in situ nanofibrillar biocomposites with enhanced miscibility, dynamic mechanical properties, rheological behavior and extrusion foaming ability. Compos B Eng 123:112–123

    CAS  Google Scholar 

  29. Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, Wang G (2018) Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in-situ fibrillated PTFE fibers. Eur Polym J 98:1–10

    CAS  Google Scholar 

  30. Yuan Q, Awate S, Misra R (2006) Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polym J 42:1994–2003

    CAS  Google Scholar 

  31. Bernland K, Smith P (2009) Nucleating polymer crystallization with poly (tetrafluoroethylene) nanofibrils. J Appl Polym Sci 114:281–287

    CAS  Google Scholar 

  32. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144

    CAS  Google Scholar 

  33. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal 2:301–324

    CAS  Google Scholar 

  34. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158

    CAS  Google Scholar 

  35. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37:568–575

    CAS  Google Scholar 

  36. Liu T, Mo Z, Zhang H (1998) Nonisothermal crystallization behavior of a novel poly (aryl ether ketone) PEDEKmK. J Appl Polym Sci 67:815–821

    CAS  Google Scholar 

  37. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112

    CAS  Google Scholar 

  38. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    CAS  Google Scholar 

  39. Fereidoon A, Ahangari MG, Saedodin S (2009) A DSC study on the nonisothermal crystallization kinetics of polypropylene/single-walled carbon nanotube nanocomposite. Polym Plast Technol Eng 48:579–586

    CAS  Google Scholar 

  40. Wu D, Sun Y, Wu L, Zhang M (2008) Linear viscoelastic properties and crystallization behavior of multi-walled carbon nanotube/polypropylene composites. J Appl Polym Sci 108:1506–1513

    CAS  Google Scholar 

  41. Huang C-W, Yang T-C, Hung K-C, Xu J-W, Wu J-H (2018) The effect of maleated polypropylene on the non-isothermal crystallization kinetics of wood fiber-reinforced polypropylene composites. Polymers 10:382

    Google Scholar 

  42. Li J, Zhou C, Wang G, Tao Y, Liu Q, Li Y (2002) Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene. Polym Test 21:583–589

    CAS  Google Scholar 

  43. Yang ZH, Wu MH, Chen G, Li SJ, Peng PP, Zhang QL (2016) The effect of montmorillonite modification on crystallization behaviour of polypropylene/montmorillonite composites. Polym Polym Compos 24:331–340

    CAS  Google Scholar 

  44. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57:217–221

    CAS  Google Scholar 

  45. Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. II Experimental evidence J Non-Cryst Solids 162:13–25

    CAS  Google Scholar 

  46. Dobreva A, Gutzow I (1993) Activity of substrates in the catalyzed nucleation of glass-forming melts. I Theory J Non-Cryst Solids 162:1–12

    CAS  Google Scholar 

  47. Nofar M, Zhu W, Park C (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353

    CAS  Google Scholar 

  48. Nofar M, Tabatabaei A, Ameli A, Park CB (2013) Comparison of melting and crystallization behaviors of polylactide under high-pressure CO2, N2, and He. Polymer 54:6471–6478

    CAS  Google Scholar 

  49. Nofar M, Tabatabaei A, Park CB (2013) Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO 2 mixtures. Polymer 54:2382–2391

    CAS  Google Scholar 

  50. Kakroodi AR, Kazemi Y, Ding W, Ameli A, Park CB (2015) Poly (lactic acid)-based in situ microfibrillar composites with enhanced crystallization kinetics, mechanical properties, rheological behavior, and foaming ability. Biomacromol 16:3925–3935

    CAS  Google Scholar 

  51. Kakroodi AR, Kazemi Y, Nofar M, Park CB (2017) Tailoring poly (lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem Eng J 308:772–782

    CAS  Google Scholar 

  52. Liu H, Zhang L, Liu F, Guo C, Zhang J (2012) Morphological Distribution in Micro-Injected Polypropylene Parts in the Presence of β-Nucleating Agent. J Macromol Sci, Part B 51:1566–1582

    CAS  Google Scholar 

  53. Somani RH, Yang L, Hsiao BS, Agarwal PK, Fruitwala HA, Tsou AH (2002) Shear-induced precursor structures in isotactic polypropylene melt by in-situ rheo-SAXS and rheo-WAXD studies. Macromolecules 35:9096–9104

    CAS  Google Scholar 

  54. Somani RH, Yang L, Hsiao BS, Sun T, Pogodina NV, Lustiger A (2005) Shear-induced molecular orientation and crystallization in isotactic polypropylene: effects of the deformation rate and strain. Macromolecules 38:1244–1255

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are also grateful for the China Scholarship Council (201607040007), the donations of PP and PTFE received from the Braskem Co. Ltd. (U.S.A.) and from the Mitsubishi Rayon Company (Japan), respectively.

Funding

This work was funded by the National Natural Science fund of China (grant number U1909219), Scientific and Technological Research Project of Henan Province (grand number 202102210028), 111 Project of Henan Province and the National Natural Science fund of China (grant number 51775001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Li or Chul B. Park.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Jalali, A., Yang, J. et al. Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites. J Mater Sci 56, 3562–3575 (2021). https://doi.org/10.1007/s10853-020-05328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05328-5

Navigation