Skip to main content
Log in

Synthesis and Antibacterial Activity of Selenium-functionalized Poly(ε-caprolactone)

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A selenium-functionalized ε-caprolactone was synthesized by introducing a phenyl selenide group at the 7-position. A polymer was obtained through the ring-opening polymerization of this monomer in a base/thiourea binary organocatalytic system. A living polymerization process was achieved under mild conditions. The resulting polymers had a controlled molecular weight with a narrow molecular weight distributions and high end-group fidelity. Random copolymers could be obtained by copolymerizing this monomer with ε-caprolactone. The thermal degradation temperature of the obtained copolymers decreased with the increasing molar ratio of selenide functionalized monomer in copolymers, while the glass transition temperature increased. In addition, the phenyl selenide side group could be further modified to a polyselenonium salt, which resulted in a polymer with good antibacterial properties. The survival rate of E. coli and S. aureus was only 9% with a polymer concentration of 62.5 µg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362.

    Article  CAS  PubMed  Google Scholar 

  2. De-la-Torre, G. E.; Dioses-Salinas, D. C.; Pizarro-Ortega, C. I.; Santillán, L. New plastic formations in the anthropocene. Sci. Total. Environ. 2021, 754, 142216.

    Article  CAS  PubMed  Google Scholar 

  3. Taghavi, N.; Udugama, I. A.; Zhuang, W. Q.; Baroutian, S. Challenges in biodegradation of non-degradable thermoplastic waste: from environmental impact to operational readiness. Biotechnol. Adv. 2021, 49, 107731.

    Article  CAS  PubMed  Google Scholar 

  4. Martin, C. Plastic world. Curr. Biol. 2019, 29, R950–R953.

    Article  CAS  Google Scholar 

  5. Zhang, Q.; Song, M.; Xu, Y.; Wang, W.; Wang, Z.; Zhang, L. Bio-based polyesters: recent progress and future prospects. Prog. Polym. Sci. 2021, 120, 101430.

    Article  CAS  Google Scholar 

  6. Hong, M.; Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 2016, 8, 42–49.

    Article  CAS  PubMed  Google Scholar 

  7. Hong, M.; Chen, E. Y. Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 2016, 55, 4188–93.

    Article  CAS  Google Scholar 

  8. Wang, X. J.; Hong, M. Lewis-pair-mediated selective dimerization and polymerization of lignocellulose-based β-angelica lactone into biofuel and acrylic bioplastic. Angew. Chem. Int. Ed. 2020, 59, 2664–2668.

    Article  CAS  Google Scholar 

  9. Coralie Jehanno; Sardon, H. Dynamic polymer network points the way to truly recyclable plastics. Nature 2019, 16, 467–468.

    Google Scholar 

  10. Sardon, H.; Dove, A. P. Plastics recycling with a difference. Science 2018, 360, 380–381.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, N.; Ren, C.; Li, H.; Li, Y.; Liu, S.; Li, Z. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. 2017, 56, 12987–12990.

    Article  CAS  Google Scholar 

  12. Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Commun. 2017, 38, 1600628.

    Article  Google Scholar 

  13. Qiu, H.; Yang, Z. N.; Ling, J. Facile synthesis of functional poly(ε-caprolactone) via Janus polymerization. Chinese J. Polym. Sci. 2019, 37, 858–865.

    Article  CAS  Google Scholar 

  14. Xu, S.; Chang, P.; Zhao, B.; Adeel, M.; Zheng, S. Formation of poly(ε-caprolactone) networks via supramolecular hydrogen bonding interactions. Chinese J. Polym. Sci. 2019, 37, 197–207.

    Article  CAS  Google Scholar 

  15. Liu, H.; Khononov, M.; Fridman, N.; Tamm, M.; Eisen, M. S. (Benz)imidazolin-2-iminato aluminum, zinc, and magnesium complexes and their applications in ring opening polymerization of ε-caprolactone. Inorg. Chem. 2019, 58, 13426–13439.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, S.; Ren, C.; Zhao, N.; Shen, Y.; Li, Z. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun. 2018, 39, 1800485.

    Article  Google Scholar 

  17. Zhao, N.; Ren, C.; Shen, Y.; Liu, S.; Li, Z. Facile synthesis of aliphatic ω-pentadecalactone containing diblock copolyesters via sequential ROP with L-lactide, ε-caprolactone, and δ-valerolactone catalyzed by cyclic trimeric phosphazene base with inherent tribasic characteristics. Macromolecules 2019, 52, 1083–1091.

    Article  Google Scholar 

  18. Fastnacht, K. V.; Spink, S. S.; Dharmaratne, N. U.; Pothupitiya, J. U.; Datta, P. P.; Kiesewetter, E. T.; Kiesewetter, M. K. Bis- and tris-urea H-bond donors for ring-opening polymerization: unprecedented activity and control from an organocatalyst. ACS Macro Lett. 2016, 5, 982–986.

    Article  CAS  Google Scholar 

  19. Ren, W. M.; Gao, H. J.; Yue, T. J. Flexible gradient poly(ether-ester) from the copolymerization of epoxides and ε-caprolactone mediated by a hetero-bimetallic complex. Chinese J. Polym. Sci. 2021, 39, 1013–1019.

    Article  CAS  Google Scholar 

  20. Hu, Q.; Jie, S. Y.; Braunstein, P.; Li, B. G. Ring-opening copolymerization of ε-caprolactone and δ-valerolactone catalyzed by a 2,6-bis(amino)phenol zinc complex. Chinese J. Polym. Sci. 2020, 38, 240–247.

    Article  CAS  Google Scholar 

  21. Hu, C. Y.; Duan, R. L.; Yang, J. W.; Dong, S. J.; Sun, Z. Q.; Pang, X.; Wang, X. H.; Chen, X. S. Enolic Schiff base zinc amide complexes: highly active catalysts for ring-opening polymerization of lactide and ε-caprolactone. Chinese J. Polym. Sci. 2018, 36, 1123–1128.

    Article  CAS  Google Scholar 

  22. Dove, A. P. Organic catalysis for ring-opening polymerization. ACS Macro Lett. 2012, 1, 1409–1412.

    Article  CAS  Google Scholar 

  23. Hao, J.; Granowski, P. C.; Stefan, M. C. Zinc undecylenate catalyst for the ring-opening polymerization of caprolactone monomers. Macromol. Rapid Commun. 2012, 33, 1294–1299.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J.; Tao, Y. Synthesis of Sustainable polyesters via organocatalytic ring-opening polymerization of o-carboxyanhydrides: advances and perspectives. Macromol. Rapid Commun. 2021, 42, 2000535.

    Article  CAS  Google Scholar 

  25. Olsén, P.; Odelius, K.; Albertsson, A. C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules 2016, 17, 699–709.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Winkler, M.; Raupp, Y. S.; Köhl, L. A. M.; Wagner, H. E.; Meier, M. A. R. Modified poly(ε-caprolactone)s: an efficient and renewable access via thia-michael addition and baeyer-villiger oxidation. Macromolecules 2014, 47, 2842–2846.

    Article  CAS  Google Scholar 

  27. Yu, L.; Zhang, M.; Du, F. S.; Li, Z. C. ROS-responsive poly(ε-caprolactone) with pendent thioether and selenide motifs. Polym. Chem. 2018, 9, 3762–3773.

    Article  CAS  Google Scholar 

  28. Li, L. G.; Wang, Q. Y.; L, R.; Su, S.; Du, F. S.; Li, Z. C. Synthesis of a ROS-responsive analogue of poly(ε-caprolactone) by the living ring-opening polymerization of 1,4-oxathiepan-7-one. Polym. Chem. 2018, 9, 4574–4584.

    Article  CAS  Google Scholar 

  29. Wu, J. A.; Ding, C.; Xing, D.; Zhang, Z.; Huang, X.; Zhu, X.; Pan, X.; Zhu, J. The functionalization of poly(ε-caprolactone) as a versatile platform using ε-(α-phenylseleno) caprolactone as a monomer. Polym. Chem. 2019, 10, 3851–3858.

    Article  CAS  Google Scholar 

  30. Clamor, C.; Cattoz, B. N.; Wright, P. M.; O’Reilly, R. K.; Dove, A. P. Controlling the crystallinity and solubility of functional PCL with efficient post-polymerisation modification. Polym. Chem. 2021, 12, 1983–1990.

    Article  CAS  Google Scholar 

  31. Wen, L.; Zhang, S.; Xiao, Y.; He, J.; Zhu, S.; Zhang, J.; Wu, Z.; Lang, M. Organocatalytic ring-opening polymerization toward poly(γ-amide-ε-caprolactone)s with tunable lower critical solution temperatures. Macromolecules 2020, 53, 5096–5104.

    Article  CAS  Google Scholar 

  32. Malikmammadov, E.; Tanir, T. E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893.

    Article  CAS  PubMed  Google Scholar 

  33. Gressier, P.; De Smet, D.; Behary, N.; Campagne, C.; Vanneste, M. Antibacterial polyester fabrics via diffusion process using active bio-based agents from essential oils. Ind. Crops Prod. 2019, 136, 11–20.

    Article  CAS  Google Scholar 

  34. Eid, B. M.; El-Sayed, G. M.; Ibrahim, H. M.; Habib, N. H. Durable antibacterial functionality of cotton/polyester blended fabrics using antibiotic/MONPs composite. Fibers Polym. 2019, 20, 2297–2309.

    Article  CAS  Google Scholar 

  35. Borjihan, Q.; Dong, A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater. Sci. 2020, 8, 6867–6882.

    Article  CAS  PubMed  Google Scholar 

  36. Olmos, D.; González-Benito, J. Polymeric materials with antibacterial activity: a review. Polymers 2021, 13, 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mukherjee, M.; De, S. Antibacterial polymeric membranes: a short review. Environ. Sci.: Water Res. Technol. 2018, 4, 1078–1104.

    CAS  Google Scholar 

  38. Liao, C.; Li, Y.; Tjong, S. C. Antibacterial activities of aliphatic polyester nanocomposites with silver nanoparticles and/or graphene oxide sheets. Nanomaterials 2019, 9, 1102.

    Article  CAS  PubMed Central  Google Scholar 

  39. Doumbia, A. S.; Vezin, H.; Ferreira, M.; Campagne, C.; Devaux, E. Studies of polylactide/zinc oxide nanocomposites: influence of surface treatment on zinc oxide antibacterial activities in textile nanocomposites. J. Appl. Polym. Sci. 2015, 132, 41776.

    Article  Google Scholar 

  40. Liu, L.; Zhang, Y.; Li, C.; Cao, J.; He, E.; Wu, X.; Wang, F.; Wang, L. Facile preparation PCL/modified nano ZnO organic-inorganic composite and its application in antibacterial materials. J. Polym. Res. 2020, 27, 78.

    Article  CAS  Google Scholar 

  41. Bashiri Rezaie, A.; Montazer, M.; Mahmoudi Rad, M. Low toxic antibacterial application with hydrophobic properties on polyester through facile and clean fabrication of nano copper with fatty acid. Mater. Sci. Eng. C 2019, 97, 177–187.

    Article  CAS  Google Scholar 

  42. Luo, H.; Yin, X. Q.; Tan, P. F.; Gu, Z. P.; Liu, Z. M.; Tan, L. Polymeric antibacterial materials: design, platforms and applications. J. Mater. Chem. B 2021, 9, 2802–2815.

    Article  CAS  PubMed  Google Scholar 

  43. Üreyen, M. E.; Aslan, C. Determination of silver release from antibacterial finished cotton and polyester fabrics into water. J. Text. Inst. 2017, 108, 1128–1135.

    Google Scholar 

  44. Yan, J.; Zheng, L.; Hu, K.; Li, L.; Li, C.; Zhu, L.; Wang, H.; Xiao, Y.; Wu, S.; Liu, J.; Zhang, B.; Zhang, F. Cationic polyesters with antibacterial properties: facile and controllable synthesis and antibacterial study. Eur. Polym. J. 2019, 110, 41–48.

    Article  CAS  Google Scholar 

  45. Huang, Y.; Hu, C.; Zhou, Y.; Duan, R.; Sun, Z.; Wan, P.; Xiao, C.; Pang, X.; Chen, X. Monomer controlled switchable copolymerization: a feasible route for the functionalization of poly(lactide). Angew. Chem. Int. Ed. 2021, 60, 9274–9278.

    Article  CAS  Google Scholar 

  46. Chen, J.; Dong, Y.; Xiao, C.; Tao, Y.; Wang, X. Organocatalyzed ring-opening polymerization of cyclic lysine derivative: sustainable access to cationic poly(ε-lysine) mimics. Macromolecules 2021, 54, 2226–2231.

    Article  CAS  Google Scholar 

  47. Hu, Z.; Chen, Y.; Huang, H.; Liu, L.; Chen, Y. Well-defined poly((α-amino-δ-valerolactone) via living ring-opening polymerization. Macromolecules 2018, 51, 2526–2532.

    Article  CAS  Google Scholar 

  48. Chen, S.; Liu, M.; Zhang, J.; Zhang, Z.; Zhu, J.; Pan, X.; Zhu, X. Photoresponsive dynamic covalent bond based on addition-fragmentation chain transfer of allyl selenides. Polym. Chem. 2021, 12, 1622–1626.

    Article  CAS  Google Scholar 

  49. Lu, W.; Pan, X.; Zhang, Z.; Zhu, J.; Zhou, N.; Zhu, X. A degradable cross-linked polymer containing dynamic covalent selenide bond. Polym. Chem. 2017, 8, 3874–3880.

    Article  CAS  Google Scholar 

  50. Lin, X.; Chen, S.; Lu, W.; Liu, M.; Zhang, Z.; Zhu, J.; Pan, X. Diselenide-yne polymerization for multifunctional selenium-containing hyperbranched polymers. Polym. Chem. 2021, 12, 3383–3390.

    Article  CAS  Google Scholar 

  51. Li, Q.; Zhang, Y.; Chen, Z.; Pan, X.; Zhang, Z.; Zhu, J.; Zhu, X. Organoselenium chemistry-based polymer synthesis. Org. Chem. Front. 2020, 7, 2815–2841.

    Article  CAS  Google Scholar 

  52. Lin, X.; Li, J.; Zhang, J.; Liu, S.; Lin, X.; Pan, X.; Zhu, J.; Zhu, X. Living cationic polymerization of vinyl ethers initiated by electrophilic selenium reagents under ambient conditions. Polym. Chem. 2021, 12, 983–990.

    Article  CAS  Google Scholar 

  53. Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc. 2010, 132, 442–443.

    Article  CAS  PubMed  Google Scholar 

  54. Tan, K. H.; Xu, W.; Stefka, S.; Demco, D. E.; Kharandiuk, T.; Ivasiv, V.; Nebesnyi, R.; Petrovskii, V. S.; Potemkin, I. I.; Pich, A. Selenium-modified microgels as bio-inspired oxidation catalysts. Angew. Chem. Int. Ed. 2019, 58, 9791–9796.

    Article  CAS  Google Scholar 

  55. Li, Q.; Liu, S.; Li, J.; Pan, X.; Zhu, J.; Zhu, X. Visual ozone sensor: structural color change of pendant selenium-containing maleimide polymers via oxidation. Macromol. Rapid Commun. 2021, 42, 2000517.

    Article  CAS  Google Scholar 

  56. Liu, S.; Li, Q.; Li, Y.; Zhang, J.; Pan, X.; Zhu, J.; Zhu, X. Controllable radical polymerization of selenide functionalized vinyl monomers and its application in redox responsive photonic crystals. Macromol. Rapid Commun. 2021, 42, 2000764.

    Article  CAS  Google Scholar 

  57. Li, Q.; Ng, K. L.; Pan, X.; Zhu, J. Synthesis of high refractive index polymer with pendent selenium-containing maleimide and use as a redox sensor. Polym. Chem. 2019, 10, 4279–4286.

    Article  CAS  Google Scholar 

  58. Ji, S.; Cao, W.; Yu, Y.; Xu, H. Dynamic diselenide bonds: exchange reaction induced by visible light without catalysis. Angew. Chem. Int. Ed. 2014, 53, 6781–6785.

    Article  CAS  Google Scholar 

  59. Fan, F.; Ji, S.; Sun, C.; Liu, C.; Yu, Y.; Fu, Y.; Xu, H. Wavelength-controlled dynamic metathesis: a light-driven exchange reaction between disulfide and diselenide bonds. Angew. Chem. Int. Ed. 2018, 57, 16426–16430.

    Article  CAS  Google Scholar 

  60. Chen, L.; Bisoyi, H. K.; Huang, Y.; Huang, S.; Wang, M.; Yang, H.; Li, Q. Healable and rearrangeable networks of liquid crystal elastomers enabled by diselenide bonds. Angew. Chem. Int. Ed. 2021, 60, 1–6.

    Google Scholar 

  61. Qian, Z.; Zhang, Y.; Pan, X.; Li, N.; Zhu, J.; Zhu, X. Selenium-doped phenolic resin spheres: ultra-high adsorption capacity of noble metals. React. Funct. Polym. 2019, 142, 223–230.

    Article  CAS  Google Scholar 

  62. Dai, Y.; Zheng, K.; Tan, Y.; Xiang, W.; Xianyu, B.; Xu, H. Fischesserite-inspired recyclable se-polyurethanes for selective gold extraction. Adv. Sust. Syst. 2020, 4, 2000072.

    Article  CAS  Google Scholar 

  63. Yu, L.; Ye, J.; Zhang, X.; Ding, Y.; Xu, Q. Recyclable (PhSe)2-catalyzed selective oxidation of isatin by H2O2: a practical and waste-free access to isatoic anhydride under mild and neutral conditions. Catal. Sci. Technol. 2015, 5, 4830–4838.

    Article  CAS  Google Scholar 

  64. Eom, T.; Khan, A. Polyselenonium salts: synthesis through sequential selenium-epoxy ‘click’ chemistry and Se-alkylation. Chem. Commun. 2020, 56, 14271–14274.

    Article  CAS  Google Scholar 

  65. Guo, J.; Qin, J.; Ren, Y.; Wang, B.; Cui, H.; Ding, Y.; Mao, H.; Yan, F. Antibacterial activity of cationic polymers: side-chain or main-chain type? Polym. Chem. 2018, 9, 4611–4616.

    Article  CAS  Google Scholar 

  66. Shi, H.; Yu, C.; Zhu, M.; Yan, J. Ammonium iodide catalyzed selenolactonization of unsaturated acids. Synthesis 2016, 48, 57–64.

    CAS  Google Scholar 

  67. Baddam, V.; Välinen, L.; Tenhu, H. Thermoresponsive polycation-stabilized nanoparticles through PISA. Control of particle morphology with a salt. Macromolecules 2021, 54, 4288–4299.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21871200), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YY., Xing, D., Pan, XQ. et al. Synthesis and Antibacterial Activity of Selenium-functionalized Poly(ε-caprolactone). Chin J Polym Sci 40, 67–74 (2022). https://doi.org/10.1007/s10118-021-2638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2638-4

Keywords

Navigation