Skip to main content
Log in

Enolic Schiff Base Zinc Amide Complexes: Highly Active Catalysts for Ring-Opening Polymerization of Lactide and ε-Caprolactone

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A series of zinc silylamido complexes based upon NNO tridentate enolic Schiff base framework have been synthesized and characterized. These complexes were tested for the ring opening polymerization of lactide and ε-caprolactone, exhibiting notably high activity at ambient temperature. The influence of imine bridge length and substituents of diketone over the course of polymerization was investigated in details. Remarkably, 4a was confirmed to be a rare example of exceedingly active and robust zinc catalysts, achieving major transformation of lactide under extremely low loading (0.025 mol%) within 18 min. The influence of various monomers as well as the polymerization mechanism have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): research, development and industrialization. Biotechnol. J. 2010, 5, 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  2. Auras, R. A.; Lim, L. T.; Selke, S. E.; Tsuji, H. Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons (2011).

    Google Scholar 

  3. Zhang, S. Y.; Chen, Z. F.; Wu, F.; Zhu, X. Y.; Liu, Z. Y.; Feng, J. M.; Yang, M. B. Studies on the effects of four-armed poly(L-lactide) on the crystallization behavior of four-armed poly(L-lactide)/linear poly(L-lactide) blends. Acta Polymerica Sinica (in Chinese) 2016, (5), 679–684.

    Google Scholar 

  4. Chen, Q.; Du, J.; Xie, H.; Zhao, Z.; Zheng, Q. Studies on preparation and properties of bio-based polymeric monomers and their bio-based polymers. Acta Polymerica Sinica (in Chinese) 2016, (10), 1330–1358.

    Google Scholar 

  5. Yang, J.; Sun, Z.; Duan, R.; Li, L.; Pang, X.; Chen, X. Copolymer of lactide and ε-caprolactone catalyzed by bimetallic Schiff base aluminum complexes. Sci. China Chem. 2016, 59, 1384–1389.

    Article  CAS  Google Scholar 

  6. Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 2010, 39, 165–173.

    Article  CAS  PubMed  Google Scholar 

  7. Stanford, M. J.; Dove, A. P. Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev. 2010, 39, 486–494.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, T. Q.; Yang, G. W.; Liu, C.; Lu, X. B. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide. Macromolecules 2017, 50, 515–522.

    Article  CAS  Google Scholar 

  9. Guillaume, S. M.; Kirillov, E.; Sarazin, Y.; Carpentier, J. F. Beyond stereoselectivity, switchable catalysis: some of the last Frontier challenges in ring-opening polymerization of cyclic esters. Chem. Eur. J. 2015, 21, 7988–8003.

    Article  CAS  PubMed  Google Scholar 

  10. Cozzi, P. G. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 2004, 33, 410–421.

    Article  CAS  PubMed  Google Scholar 

  11. Chisholm, M. H.; Gallucci, J. C.; Zhen, H.; Huffman, J. C. Three-coordinate zinc amide and phenoxide complexes supported by a bulky Schiff base ligand. Inorg. Chem. 2001, 40, 5051–5054.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, H. Y.; Tang, H. Y.; Lin, C. C. Ring-opening polymerization of lactides initiated by zinc alkoxides derived from NNO-tridentate ligands. Macromolecules 2006, 39, 3745–3752.

    Article  CAS  Google Scholar 

  13. Pang, X.; Chen, X.; Zhuang, X.; Jing, X. Crown-like macrocycle zinc complex derived from β-diketone ligand for the polymerization of rac-lactide. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 643–649.

    Article  CAS  Google Scholar 

  14. Baran, J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Intermolecular chain transfer to polymer with chain scission: general treatment and determination of k p/k tr in L,L-lactide polymerization. Macromol. Rapid Commun. 1997, 18, 325–333.

    Article  CAS  Google Scholar 

  15. Save, M.; Schappacher, M.; Soum, A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. general aspects and kinetics. Macromol. Chem. Phys. 2002, 203, 889–899.

    Article  CAS  Google Scholar 

  16. Gulli, S.; Daran, J. C.; Poli, R. Synthesis and structure of four-coordinate copper(ii) complexes stabilized by β-Ketiminato ligands and application in the reverse atom-transfer radical polymerization of styrene. Eur. J. Inorg. Chem. 2011, 10, 1666–1672.

    Article  CAS  Google Scholar 

  17. Tang, H. Y.; Chen, H. Y.; Huang, J. H.; Lin, C. C. Synthesis and structural characterization of magnesium ketiminate complexes: efficient initiators for the ring-opening polymerization of L-lactide. Macromolecules 2007, 40, 8855–8860.

    Article  CAS  Google Scholar 

  18. Shit, S.; Sen, S.; Mitra, S.; Hughes, D. L. Syntheses, characterization and crystal structures of two square-planar Ni(II) complexes with unsymmetrical tridentate Schiff base ligands and monodentate pseudohalides. Transition Met. Chem. 2009, 34, 269–274.

    Article  CAS  Google Scholar 

  19. Bochmann, M.; Bwembya, G.; Webb, K. J.; Malik, M. A.; Walsh, J. R.; O’Brien, P. Arene chalcogenolato complexes of zinc and cadmium, inorganic syntheses. John Wiley & Sons, Inc. 1997, 19–24.

    Google Scholar 

  20. Pang, X.; Du, H.; Chen, X.; Wang, X.; Jing, X. Enolic Schiff base aluminum complexes and their catalytic stereoselective polymerization of racemic lactide. Chem. Eur. J. 2008, 14, 3126–3136.

    Article  CAS  PubMed  Google Scholar 

  21. Scheiper, C.; Dittrich, D.; Wölper, C.; Bläser, D.; Roll, J.; Schulz, S. Synthesis, structure, and catalytic activity of tridentate, base-functionalized β-Ketiminate zinc complexes in ring-opening polymerization of lactide. Eur. J. Inorg. Chem. 2014, 2014, 2230–2240.

    Article  CAS  Google Scholar 

  22. Hong, M.; Chen, E. Y. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 2016, 8, 42–49.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, M.; Pan, C.; Ma, H. Ring-opening polymerization of rac-lactide and α-methyltrimethylene carbonate catalyzed by magnesium and zinc complexes derived from binaphthyl-based iminophenolate ligands. Dalton Trans. 2015, 44, 12420–12431.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, H.; Yang, Y.; Ma, H. Stereoselectivity Switch between zinc and magnesium initiators in the polymerization of rac-lactide: different coordination chemistry, different stereocontrol mechanisms. Macromolecules 2014, 47, 7750–7764.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21574124, 51503203 and 51233004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuan Pang or Xue-Si Chen.

Electronic supplementary material

10118_2018_2129_MOESM1_ESM.pdf

Enolic Schiff Base Zinc Amide Complexes: Highly Active Catalysts for Ring-Opening Polymerization of Lactide and ε-Caprolactone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, CY., Duan, RL., Yang, JW. et al. Enolic Schiff Base Zinc Amide Complexes: Highly Active Catalysts for Ring-Opening Polymerization of Lactide and ε-Caprolactone. Chin J Polym Sci 36, 1123–1128 (2018). https://doi.org/10.1007/s10118-018-2129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2129-4

Keywords

Navigation