Skip to main content

Advertisement

Log in

Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Graphene fibers are a kind of novel carbon fibers assembled by orderly aligned graphene sheets with high flexibility, good conductivity, high thermal conductivity, and low density, which make them possible to be widely used in high-performance and multifunctional compound materials as well as flexible electronic devices. In this review, we summarize the research progress in the synthesis of graphene fibers, and their applications in sensor, energy storage, and energy conversion. Furthermore, the current issues and some prospects for the future trend of graphene fibers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donnet, J. B. in Carbon fibers. Marcel Dekker, Inc, 1998.

    Google Scholar 

  2. He, F. in Carbon fiber and graphite fiber. Chemical Industry Press, 2010.

    Google Scholar 

  3. Jeffries, R. Prospects for carbon fibres. Nature 1971, 232, 304–307.

    Article  CAS  PubMed  Google Scholar 

  4. Frank, E.; Steudle, L. M.; Ingildeev, D.; Spörl, J. M.; Buchmeiser, M. R. Carbon fibers: Precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 2014, 53, 5262–5298.

    Article  CAS  Google Scholar 

  5. Standage, A. E.; Prescott, R. High elastic modulus carbon fibre. Nature 1966, 211, 169–169.

    Article  CAS  Google Scholar 

  6. Moreton, R.; Watt, W.; Johnson, W. Carbon fibres of high strength and high breaking strain. Nature 1967, 213, 690–691.

    Article  CAS  Google Scholar 

  7. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  8. Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles. Nature 2003, 423, 703–703.

    Article  CAS  PubMed  Google Scholar 

  9. Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C.; Parra-Vasquez, A. N. G.; Kim, M. J.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W. E.; Pasquali, M.; Hwang, W. F.; Hauge, R. H.; Fischer, J. E.; Smalley, R. E. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447–1450.

    Article  CAS  PubMed  Google Scholar 

  10. Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334.

    Article  CAS  PubMed  Google Scholar 

  11. Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J. E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 2009, 4, 830–834.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 2002, 419, 801–801.

    Article  CAS  PubMed  Google Scholar 

  13. Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    Article  CAS  Google Scholar 

  16. Weng, W. Z.; He, S. S.; Song, H. Y.; Li, X. Q.; Cao, L. H.; Hu, Y. J.; Cui, J.; Zhou, Q. R.; Peng, H. S.; Su, J. C. Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior. ACS Nano 2018, 12, 7601–7612.

    Article  CAS  PubMed  Google Scholar 

  17. He, S. S.; Zhang, Y. Y.; Qiu, L. B.; Zhang, L. S.; Xie, Y.; Pan, J.; Chen, P. N.; Wang, B. J.; Xu, X. J.; Hu, Y. J.; Dinh, C. T.; De Luna, P.; Banis, M. N.; Wang, Z. Q.; Sham, T. K.; Gong, X. G.; Zhang, B.; Peng, H. S.; Sargent, E. H. Chemical-to-electricity carbon: Water device. Adv. Mater. 2018, 30, 1707635.

    Article  CAS  Google Scholar 

  18. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  19. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  PubMed  Google Scholar 

  21. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  CAS  PubMed  Google Scholar 

  23. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

    Article  CAS  Google Scholar 

  24. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, H. J.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

    Article  CAS  PubMed  Google Scholar 

  26. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

    Article  CAS  Google Scholar 

  27. Brodie, B. C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259.

    Article  Google Scholar 

  28. Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

    Article  CAS  Google Scholar 

  29. Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

    Article  CAS  PubMed  Google Scholar 

  30. Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474.

    Article  CAS  Google Scholar 

  31. Moon, K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73–78.

    Article  CAS  PubMed  Google Scholar 

  32. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

    Article  CAS  PubMed  Google Scholar 

  33. McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  CAS  Google Scholar 

  34. Zhu, Y. W.; Stoller, M. D.; Cai, W. W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. S. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 2010, 4, 1227–1233.

    Article  CAS  Google Scholar 

  35. Wang, Z. J.; Zhou, X. Z.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem, C 2009, 113, 14071–14075.

    Article  CAS  Google Scholar 

  36. Guo, H.; Wang, X.; Qian, Q.; Wang, F.; Xia, X. H. A green approach to the dynthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

    Article  CAS  Google Scholar 

  37. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2006, 6, 183–191.

    Article  CAS  Google Scholar 

  38. Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y. J.; Liang, H.; Xu, Z.; Xi, J. B.; Chen, G. F.; Gao, W. W.; Xue, M. Q.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11, 4301–4306.

    Article  CAS  PubMed  Google Scholar 

  40. Lim, L.; Liu, Y. S.; Liu, W. W.; Tjandra, R.; Rasenthiram, L.; Chen, Z. W.; Yu, A. P. All-in-one graphene based composite fiber: toward wearable supercapacitor. ACS Appl. Mater. Interfaces 2017, 9, 39576–39583.

    Article  CAS  PubMed  Google Scholar 

  41. Meng, J.; Nie, W. Q.; Zhang, K.; Xu, F. J.; Ding, X.; Wang, S. R.; Qiu, Y. P. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 2018, 10, 13652–13659.

    Article  CAS  PubMed  Google Scholar 

  42. Choi, S. J.; Yu, H. Y.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 2018, 14, 1703934.

    Article  CAS  Google Scholar 

  43. Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.

    Article  CAS  PubMed  Google Scholar 

  45. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822.

    Article  CAS  PubMed  Google Scholar 

  46. Li, M. C.; Zhang, X. H.; Wang, X.; Ru, Y.; Qiao, J. L. Ultrastrong graphene-based fibers with increased elongation. Nano Lett. 2016, 16, 6511–6515.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Y.; Jiang, C. C.; Hu, C. G.; Dong, Z. L.; Xue, J. L.; Meng, Y. N.; Zheng, N.; Chen, P. W.; Qu, L. T. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 2013, 7, 2406–2412.

    Article  CAS  PubMed  Google Scholar 

  48. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a onestep hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    Article  CAS  PubMed  Google Scholar 

  49. Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856–1861.

    Article  CAS  PubMed  Google Scholar 

  50. Wu, G.; Tan, P. F.; Wu, X. J.; Peng, L.; Cheng, H. Y.; Wang, C. F.; Chen, W.; Yu, Z. Y.; Chen, S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv. Funct. Mater. 2017, 27, 1702493.

    Article  CAS  Google Scholar 

  51. Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings: Controlled fabrication and site-specific functionalization. Nano Lett. 2012, 12, 5879–5884.

    Article  CAS  PubMed  Google Scholar 

  52. Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. A Bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv. Mater. 2018, 30, 1706435.

    Article  CAS  Google Scholar 

  53. Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27, 12164–12171.

    Article  CAS  PubMed  Google Scholar 

  54. Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, T.; Dai, L. M. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew. Chem. Int. Ed. 2015, 54, 14947–14950.

    Article  CAS  Google Scholar 

  56. Hu, C. G.; Zhai, X. Q.; Liu, L. L.; Zhao, Y.; Jiang, L.; Qu, L. T. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci. Rep. 2013, 3, 2065.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jang, E. Y.; Carretero-Gonzalez, J.; Choi, A.; Kim, W. J.; Kozlov, M. E.; Kim, T.; Kang, T. J.; Baek, S. J.; Kim, D. W.; Park, Y. W.; Baughman, R. H.; Kim, Y. H. Fibers of reduced graphene oxide nanoribbons. Nanotechnology 2012, 23, 235601.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, F.; Zhao, Y.; Cheng, H. H.; Qu, L. T. A graphene fibriform responsor for sensing heat, humidity, and mechanical changes. Angew. Chem. Int. Ed. 2015, 54, 14951–14955.

    Article  CAS  Google Scholar 

  59. Ding, X. T.; Bai, J.; Xu, T.; Li, C. X.; Zhang, H. M.; Qu, L. T. A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. Electrochem. Commun. 2016, 72, 122–125.

    Article  CAS  Google Scholar 

  60. Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    Article  CAS  Google Scholar 

  61. Chen, B.; Liu, E. Z.; Cao, T. T.; He, F.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. Nano Energy 2017, 3, 247–256.

    Article  CAS  Google Scholar 

  62. Lee, J. G.; Kwon, Y. B.; Ju, J. Y.; Choi, S. H.; Kang, Y. K.; Yu, W. R.; Kim, D. W. Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries. J. Appl. Electrochem. 2017, 47, 865–875.

    Article  CAS  Google Scholar 

  63. Wang, B.; Ryu, J. G.; Choi, S. H.; Song, G. J.; Hong, D. K.; Hwang, C. Y.; Chen, X.; Wang, B.; Li, W.; Song, H. K.; Park, S. J.; Ruoff, R. S. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano 2018, 12, 1736–1746.

    Google Scholar 

  64. Hoshide, T.; Zheng, Y. C.; Hou, J. Y.; Wang, Z. Q.; Li, Q. W.; Zhao, Z. G.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett. 2017, 17, 3543–3549.

    Article  CAS  PubMed  Google Scholar 

  65. Rao, J. Y.; Liu, N. S.; Zhang, Z.; Su, J.; Li, L. Y.; Xiong, L.; Gao, Y. H. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 2018, 51, 425–433.

    Article  CAS  Google Scholar 

  66. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    Article  CAS  PubMed  Google Scholar 

  67. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater, 2012, 22, 4501–4510.

    Article  CAS  Google Scholar 

  68. Chen, J.; Li, C.; Shi, G. Q. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 2013, 4, 1244–1253.

    Article  CAS  PubMed  Google Scholar 

  69. Huang, L.; Li, C.; Shi, G. Q. High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J. Mater. Chem. A 2014, 2, 968–974.

    Article  CAS  Google Scholar 

  70. Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitors. Nanoscale 2014, 6, 6448–6451.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, Y.; Han, Q.; Cheng, Z. H.; Jiang, L.; Qu, L. T. Integrated-graphene systems by laser irradiation for advanced deviced. Nano Today 2017, 12, 14–30.

    Article  CAS  Google Scholar 

  72. Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. T. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 2015, 3, 2547–2551.

    Article  CAS  Google Scholar 

  73. Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11, 11056–11065.

    Article  CAS  PubMed  Google Scholar 

  74. Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 2013, 52, 10482–10486.

    Article  CAS  Google Scholar 

  75. Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 2014, 26, 2909–2913.

    Article  CAS  PubMed  Google Scholar 

  76. Conley, H.; Lavrik, N. V.; Prasai, D.; Bolotin, K. I. Graphene bimetallic-like cantilevers: Probing graphene/substrate interactions. Nano Lett. 2011, 11, 4748–4752.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y. H.; Bian, K.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Zhang, H. M.; Qu, L. T. Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications. Electrochem. Commun. 2013, 35, 49–52.

    Article  CAS  Google Scholar 

  78. Xie, X. J.; Qu, L. T.; Zhou, C.; Li, Y.; Bai, H.; Shi, G. Q.; Dai, L. M. An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 2010, 4, 6050–6054.

    Article  CAS  PubMed  Google Scholar 

  79. Liang, J. J.; Huang, Y.; Oh, J. Y.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 2011, 21, 3778–3784.

    Article  CAS  Google Scholar 

  80. Liu, J.; Wang, Z.; Xie, X. J.; Cheng, H. H.; Zhao, Y.; Qu, L. T. A rationally-designed synergetic polypyrrole/graphene bilayer actuator. J. Mater. Chem. 2012, 22, 4015–4020.

    Article  CAS  Google Scholar 

  81. Huang, Y.; Liang, J. J.; Chen, Y. S. The application of graphene based materials for actuators. J. Mater. Chem. 2012, 22, 3671–3679.

    Article  CAS  Google Scholar 

  82. Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote lightcontrolled liquid microvalves. Adv. Funct. Mater. 2012, 22, 4017–4022.

    Article  CAS  Google Scholar 

  83. Wu, C. Z.; Feng, J.; Peng, L. L.; Ni, Y.; Liang, H. Y.; He, L. H.; Xie, Y. Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: New prototype robotic motions under infrared-light stimuli. J. Mater. Chem. 2011, 21, 18584–18591.

    Article  CAS  Google Scholar 

  84. Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5, 3112–3126.

    Article  CAS  PubMed  Google Scholar 

  85. Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Chen, W. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv. Mater. 2013, 25, 1270–1274.

    Article  CAS  PubMed  Google Scholar 

  86. Liang, J. J.; Huang, L.; Li, N.; Huang, Y.; Wu, Y. P.; Fang, S. L.; Oh, J. Y.; Kozlov, M.; Ma, Y. F.; Li, F. F.; Baughman, R.; Chen, Y. S. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 2012, 6, 4508–4509.

    Article  CAS  PubMed  Google Scholar 

  87. Cheng, H. H.; Huang, Y. X.; Shi, G. Q.; Jiang, L.; Qu, L. T. Graphene-based functional architectures: Sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 2017, 50, 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  88. Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329–335.

    Article  CAS  Google Scholar 

  89. Yang, Z. B.; Sun, H.; Chen, T.; Qiu, L. B.; Luo, Y. F.; Peng, H. S. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. Int. Ed. 2013, 52, 7545–7548.

    Article  CAS  Google Scholar 

  90. Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4, 1600262.

    Article  CAS  Google Scholar 

  91. Xu, J.; Chen, Z. Y.; Zhang, H. W.; Lin, G. B.; Wang, X. X.; Long, J. L. Cd3(C3N3S3)2 coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H2O2 production under visible light. Sci. Bull. 2017, 62, 610–618.

    Article  CAS  Google Scholar 

  92. Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 2014, 53, 250–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Nos. 2017YFB1104300 and 2016YFA0200200), the National Natural Science Foundation of China (Nos. 51673026, 21674056, 21773007, 21575014, and 11602272), Beijing Natural Science Foundation (Nos. 2152028 and 2184122), 111 Project 807012, the Fundamental Research Funds for the Central Universities (No. 2018CX01017), Beijing Institute of Technology Research Fund Program for Young Scholars, and the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, YBKT18-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Han or Liang-Ti Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, GH., Han, Q. & Qu, LT. Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. Chin J Polym Sci 37, 535–547 (2019). https://doi.org/10.1007/s10118-019-2245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2245-9

Keywords

Navigation