Skip to main content
Log in

Preparation and Characteristics of Poly(butylene adipate-co-terephthalate)/Polylactide Blend Films via Synergistic Efficiency of Plasticization and Compatibilization

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polylactide (PLA) films blended with poly(butylene adipate-co-terephthalate) (PBAT) were hot melted using a twin screw extruder with the addition of triethyl citrate (TEC) as a plasticizer and toluene diisocyanate (TDI) as a compatibilizer. The synergistic effects of the two additives on the mechanical, thermal, and morphological properties of the PLA/PBAT blend films were investigated. The influence of TEC content on the plasticized PLA films and the effect of TDI’s presence on the PLA/PBAT blend films were also studied by comparing them with neat PLA. The results showed a pronounced increase in elongation at break of the plasticized PLA films with increasing TEC levels, but a slight reduction in thermal stability. Also, the addition of TEC and TDI to the blend system not only synergistically enhanced the tensile properties and tensile-impact strength of the PLA/PBAT blends, but also affected their crystallinity and cold crystallization rate, a result of the improvement of interfacial interaction between PLA and PBAT, including the enhancement of their chain mobility. The synergy of the plasticization and compatibilization processes led to the improvement of tensile properties, tensile-impact strength, and compatibility of the blends, accelerating cold crystallization without affecting crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faruk, O. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596.

    Article  CAS  Google Scholar 

  2. Nyambo, C.; Mohanty, A. K.; Misra, M. Patolylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 2010, 11, 1654–1660.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, K. Y.; Li, J. B.; Wang, H. X.; Ren, J. Eatffect of starshaped chain architectures on the polylactide stereocomplex crystallization behaviors. Chinese J. Polym. Sci. 2017, 35, 974–991.

    Article  CAS  Google Scholar 

  4. Shi, X.; Zhang, G.; Phuong, T. V.; Lazzeri, A. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid). Molecules 2015, 20, 1579–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci. 2017, 35, 386–399.

    Article  CAS  Google Scholar 

  6. Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermomechanical and morphological behaviour of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22, 398–408.

    Article  CAS  Google Scholar 

  7. Ren, J.; Fu, H.; Ren, T.; Yuan, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-coterephthalate). Carbohyd. Polym. 2009, 77, 576–582.

    Article  CAS  Google Scholar 

  8. Lee, D. Y.; Lee, S. H.; Cho, M. S.; Namc, J. D.; Lee, Y. Facile fabrication of highly flexible poly(lactic acid) film using alternate multilayers of poly(butylene adipate)-co-terephthalate. Polym. Int. 2015, 64, 581–585.

    Article  CAS  Google Scholar 

  9. Zhang, Y.; Deng, B. Y.; Liu, Q. S. Rheology and crystallization of PLA containing PLA-grafted nanosilica. Plast. Rubber Compos. 2014, 43, 309–314.

    Article  CAS  Google Scholar 

  10. Li, Y.; Shimizu, H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol. Biosci. 2007, 7, 921–928.

    Article  CAS  PubMed  Google Scholar 

  11. Ouchi, T.; Ohya, Y. Design of lactide copolymers as biomaterials. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 453–462.

    Article  CAS  Google Scholar 

  12. Nouvel, C.; Dubois, P.; Dellacherie, E.; Six, J. L. Controlled synthesis of amphiphilic biodegradable polylactide-grafted dextran copolymers. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2577–2588.

    Article  CAS  Google Scholar 

  13. Bai, H. W.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl. Mater. Interfaces 2012, 4, 897–905.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan, Y.; Hu, Z.; Fu, X.; Jiang, L.; Xiao, Y.; Hu, K.; Yan, P.; Lei, J. Poly(lactic acid) plasticized by biodegradable glyceryl lactate. J. Appl. Polym. Sci. 2016, 133, 43460.

    Google Scholar 

  15. Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32, 1099–1110.

    Article  CAS  Google Scholar 

  16. Labrecque, L. V.; Kumar, R. A.; Dave, V.; Gross, R. A.; Mc-Carthy, S. P. Citrate esters as plasticizers for poly(lactic acid). J. Appl. Polym. Sci. 1997, 66, 1507–1513.

    Article  CAS  Google Scholar 

  17. Pillin, I.; Montrelay, N.; Grohens, Y. Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor. Polymer 2006, 47, 4676–4682.

    Article  CAS  Google Scholar 

  18. Kim, K. S.; Chin, I. J.; Yoon, J. S.; Choi, H. J.; Lee, D. C.; Lee, K. H. Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(L-lactide)/poly(vinyl acetate) blends. J. Appl. Polym. Sci. 2001, 82, 3618–3626.

    Article  CAS  Google Scholar 

  19. Shibata, M.; Inoue, Y.; Miyoshi, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(Llactide) with poly(butylenes succinate-co-L-lactate) and poly(butylene succinate). Polymer 2006, 47, 3557–3564.

    Article  CAS  Google Scholar 

  20. Fortunati, E.; Puglia, D.; Iannoni, A.; Terenzi, A.; Kenny, J. M.; Torre, L. Processing conditions, thermal and mechanical responses of stretchable poly(lactic acid)/poly(butylene succinate) films. Materials 2017, 809, 1–16.

    Google Scholar 

  21. Zhang, L. L.; Xiong, C. D.; Deng, X. M. Biodegradable polyester blends for biomedical application. J. Appl. Polym. Sci. 1995, 56, 103–112.

    Article  CAS  Google Scholar 

  22. Wang, L.; Ma, W.; Gross, R. A.; McCarthy, S. P. Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone). Polym. Degrad. Stab. 1998, 59, 161–168.

    Article  CAS  Google Scholar 

  23. Jiang, L.; Wolcott, M. P.; Zhang, J. W. Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7, 199–207.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, N. W.; Wang, Q. F.; Ren, J.; Wang, L. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 2009, 44, 250–256.

    Article  CAS  Google Scholar 

  25. Liu, B.; Bhaladhare, S.; Zhan, P.; Jiang, L.; Zhang, J. Morphology and properties of thermoplastic sugar beet pulp and poly(butylene adipate-co-terepthalate) blends. Ind. Eng. Chem. Res. 2011, 50, 13859–13865.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Chiao, S. M.; Hung, T. F.; Yang, S. Y. Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: Influence of compatibilizer type. J. Appl. Polym. Sci. 2012, 125, E402–E412.

    Article  CAS  Google Scholar 

  27. Xiao, H. W.; Li, P.; Ren, X.; Jiang, T.; Taut, Y. J. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): Effect of triphenyl phosphate and talc. J. Appl. Polym. Sci. 2010, 118, 3558–3569.

    Article  CAS  Google Scholar 

  28. Phetwarotai, W.; Aht-Ong, D. Characterization and properties of nucleated polylactide, poly(butylenes adipate-co-terephthalate), and thermoplastic starch ternary blend films: Effects of compatibilizer and starch. Adv. Mater. Res. 2013, 747, 673–677.

    Article  CAS  Google Scholar 

  29. Jang, W. Y.; Shin, B. Y.; Lee, T. J.; Narayan, R. J. Thermal properties and morphology of biodegradation PLA/starch compatibilized blends. Ind. Eng. Chem. 2007, 13, 457–464.

    CAS  Google Scholar 

  30. Zhang, J. F.; Sun, X. Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 2004, 94, 1697–1704.

    Article  CAS  Google Scholar 

  31. Wang, H.; Sun, X.; Seib, P. Effects of starch moisture on properties of wheat starch/poly(lactic acid) blend containing methylenediphenyl diisocyanate. J. Polym. Environ. 2002, 10, 133–138.

    Article  CAS  Google Scholar 

  32. Phetwarotai, W.; Potiyaraj, P.; Aht-Ong, D. Properties of compatibilized polylactide blend films with gelatinized corn and tapioca starches. J. Appl. Polym. Sci. 2010, 116, 2305–2311.

    CAS  Google Scholar 

  33. Carlson, D.; Nie, L.; Narayan, R.; Dubois, P. Maleation of polylactide (PLA) by reactive extrusion. J. Appl. Polym. Sci. 1999, 72, 477–485.

    Article  CAS  Google Scholar 

  34. Li, H.; Huneault, M. A. Effect of chain extension on the properties of PLA/TPS blends. J. Appl. Polym. Sci. 2011, 122, 134–141.

    Article  CAS  Google Scholar 

  35. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914.

    Article  CAS  Google Scholar 

  36. Mohapatra, A. K.; Mohanty, S.; Nayak, S. K. Study of thermomechanical and morphological behavior of biodegradable PLA/PBAT/layered silicate blend nanocomposites. J. Polym. Environ. 2014, 22, 398–408.

    Article  CAS  Google Scholar 

  37. Marcilla, A. and Beltran, M., in Handbook of Plasticizers, 1st ed., by Wypych, G., ChemTec Publishing, Toronto, NY, 2004, p.115

  38. Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films. Chinese J. Polym. Sci. 2016, 34, 1129–1140.

    Article  CAS  Google Scholar 

  39. Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Mechanical characteristics and thermal behaviours of polylactide blend films: Influence of nucleating agent and poly(butylenes adipateco-terephthalate). Plast. Rubber Compos. 2016, 45, 333–345.

    Article  CAS  Google Scholar 

  40. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Disorder-to-order phase transition and multiple melting behavior of poly(Llactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357.

    Article  CAS  Google Scholar 

  41. Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym. Lett. 2011, 5, 849–858.

    Article  CAS  Google Scholar 

  42. Bueche, F., in Physical Properties of Polymers, 1st ed., Interscience Publishers, NY, 1979, p.102

    Google Scholar 

Download references

Acknowledgments

The work was financially supported by Development and Promotion of Science and Technology Talents (DPST) (No. 013/2559). Thanks also to Mr. Thomas Coyne for assistance with the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worasak Phetwarotai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phetwarotai, W., Phusunti, N. & Aht-Ong, D. Preparation and Characteristics of Poly(butylene adipate-co-terephthalate)/Polylactide Blend Films via Synergistic Efficiency of Plasticization and Compatibilization. Chin J Polym Sci 37, 68–78 (2019). https://doi.org/10.1007/s10118-019-2174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2174-7

Keywords

Navigation