Skip to main content
Log in

A study on the structural transition of a single polymer chain by parallel tempering molecular dynamics simulation

  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The structural transition of a single polymer chain with chain length of 100, 200 and 300 beads was investigated by parallel tempering MD simulation. Our simulation results can capture the structural change from random coil to orientationally ordered structure with decreasing temperature. The clear transition was observed on the curves of radius of gyration and global orientational order parameter P as the function of temperature, which demonstrated structural formation of a single polymer chain. The linear relationships between three components of square radius of gyration R2gx, R2gy, R2gz and global orientational order P can be obtained under the structurally transformational process. The slope of the linear relationship between x (or y-axis) component R2gx (or R2gy) and P is negative, while that of R2gz as the function of P is positive. The absolute value of slope is proportional to the chain length. Once the single polymer chain takes the random coil or ordered configuration, the linear relationship is invalid. The conformational change was also analyzed on microscopic scale. The polymer chain can be treated as the construction of rigid stems connecting by flexible loops. The deviation from exponentially decreased behavior of stem length distribution becomes prominent, indicating a stiffening of the chain arises leading to more and more segments ending up in the trans state with decreasing temperature. The stem length Ntr is about 21 bonds indicating the polymer chain is ordered with the specific fold length. So, the simulation results, which show the prototype of a liquid-crystalline polymer chain, are helpful to understand the crystallization process of crystalline polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yau, S.T. and Vekilov, P.G., Nature, 2000, 406: 494

    Article  CAS  Google Scholar 

  2. Oxtoby, D.W., Nature, 2000, 406: 464

    Article  CAS  Google Scholar 

  3. Gee, R.H., Lacevic, N. and Fried, L.E., Nature Materials, 2006, 5: 39

    Article  CAS  Google Scholar 

  4. Olmsted, P.D., Poon, W.C.K., McLeish, T.C.B., Terrill, N.J. and Ryan, A.J., Phys. Rev. Lett., 1998, 81: 373

    Article  CAS  Google Scholar 

  5. ten Wolde, P.R. and Frenkel, D., Science, 1997, 277: 1975

    Article  Google Scholar 

  6. Heeley, E.L., Maidens, A.V., Olmsted, P.D., Bras, W., Dolbnya, I.P., Fairclough, J.P.A., Terril, N.J. and Ryan, A.J., Macromolecules, 2003, 36: 3656

    Article  CAS  Google Scholar 

  7. Terrill, N.J., Fairclough, J.P.A., Towns-Andrews, E., Komanschek, B.U., Young, R.J. and Ryan, A.J., Polymer, 1998, 39: 2381

    Article  CAS  Google Scholar 

  8. Shimada, T., Doi, M. and Okano, K., J. Chem. Phys., 1988, 88: 7181

    Article  CAS  Google Scholar 

  9. Kavassalis, T.A. and Sundararajan, P.R., Macromolecular, 1993, 26: 4144

    Article  CAS  Google Scholar 

  10. Fujiwara, S. and Sato, T., J. Chem. Phys., 1997, 107: 613

    Article  CAS  Google Scholar 

  11. Fujiwara, S. and Sato, T., J. Chem. Phys., 2001, 114: 6455

    Article  CAS  Google Scholar 

  12. Fujiwara, S. and Sato, T., J. Phy. Soc. Jpn., 2006, 75: 024605

    Article  Google Scholar 

  13. Muthukumar, M., and Welch, P., Polymer, 2000, 41: 8833

    Article  CAS  Google Scholar 

  14. Günter, R. and Jens-Uwe, S., Phy. Rev. Lett., 1998, 80: 3771

    Article  Google Scholar 

  15. van Duijneveldt, J.S. and Frenkel, D., J. Chem. Phys., 1992, 96: 4655

    Article  Google Scholar 

  16. He, L.L., Zhang, L.X., Chen, H.P. and Liang, H.J., Polymer, 2009, 50: 3403

    Article  CAS  Google Scholar 

  17. He, L.L., Zhang, L.X., Ye, Y.S. and Liang, H.J., J. Phys. Chem. B, 2010, 114: 7189

    Article  CAS  Google Scholar 

  18. Li, S.B., Ji, Y.Y., Chen, P., Zhang, L.X. and Liang, H.J., Polymer, 2010, 51: 4994

    Article  CAS  Google Scholar 

  19. Kirkpatrick, S., Gelatt Jr, C.D. and Vecchi, M.P., Science, 1983, 220: 671

    Article  CAS  Google Scholar 

  20. Frantz, D.D., Freeman, D.L. and Doll, J.D., J. Chem. Phys., 1990, 93: 2769

    Article  CAS  Google Scholar 

  21. Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V. and Vorontsov-Velyaminov, P.N.J., Chem. Phys., 1992, 96: 1776

    CAS  Google Scholar 

  22. Marinari, E. and Parisi, G., Europhys. Lett., 1992, 19: 451

    Article  CAS  Google Scholar 

  23. Geyer, C.J. and Thompson, E.A., J. Am. Stat. Soc., 1995, 90: 909

    Article  Google Scholar 

  24. Mayo, S.L., Olafson, B.D. and Goddard, III. W.A., J. Phys. Chem., 1990, 94: 8897

    Article  CAS  Google Scholar 

  25. Nose, S., J. Chem. Phy., 1984, 81: 511

    Article  CAS  Google Scholar 

  26. Hoover, W.G., Phys. Rev. A, 1985, 31: 1695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-ting Jiang  (姜舟婷).

Additional information

This work was financially supported by the Science and Technology Planning Project of Zhejiang Province, China (No. 2010R10022), Natural Science Foundation of Zhejiang Province, China (No. Y6110304) and National Natural Science Foundation of China (No. 20904047).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Zt., Xu, P. & Sun, Tt. A study on the structural transition of a single polymer chain by parallel tempering molecular dynamics simulation. Chin J Polym Sci 30, 45–55 (2012). https://doi.org/10.1007/s10118-012-1101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-012-1101-y

Keywords

Navigation