Skip to main content
Log in

Thermo-chemical reactions and structural evolution of acrylamide-modified polyacrylonitrile

  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers for carbon fibers were studied by DSC and in situ FTIR techniques in nitrogen (N2) and air flows. The cyclization mechanism and stabilization behavior of polyacrylonitrile (PAN) were discussed. In N2 flow, it was found that AM had the ability to initiate and accelerate cyclization process, which was confirmed by the fact that the initiation of nitriles shifted to a lower temperature. Compared to AN homopolymer, the initiation temperature of cyclization was ahead 32 K by introducing 3.59 mol% AM into the copolymer. The exothermic reaction was relaxed due to the presence of two separated exothermic peaks. Accompanied by DSC, in situ FTIR and calculation of activation energy, the two peaks were proved to be caused by ionic cyclization and free radical cyclization, respectively, and the corresponding cyclization mechanism was proposed. With increasing in AM content, the ionic cyclization tends to be dominant and the total heat liberated first increases and then decreases. For AN homopolymer, the activation energy of cyclization is 179 kJ/mol. For AN-AM copolymer (containing 3.59 mol% AM), the activation energy of ionic cyclization is 96 kJ/mol and that of free radical cyclization is 338 kJ/mol. In air flow, similar cyclization routes occur and the difference is the contribution of oxidation. The oxygen in environment has no remarkable effect on cyclization of AN homopolymer but retards the cyclization of AN-AM copolymers. For AN-AM copolymer with 3.59 mol% AM, the cyclization temperature is postponed 10°C in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donnet, J.B., Wang, T.K. and Jimmy C.M.P., “Carbon fibers”, 2rd ed., Marcel Dekke, New York, 1998, p.1

    Google Scholar 

  2. Wu, X.P., Lu, C.X., Wu, G.P., Zhang, R. and Ling, L.C., Fibers and Polymers, 2005, 6: 103

    Article  CAS  Google Scholar 

  3. Wang, Y., Wang, C., Wu, J. and Jing, M., J. Appl. Polym. Sci., 2007, 106: 1787

    Article  CAS  Google Scholar 

  4. Wu, G.P., Lu, C.X., Wu, X.P., Zhang, S.C., He, F. and Ling, L.C., J. Appl. Polym. Sci., 2004, 94: 1705

    Article  CAS  Google Scholar 

  5. Beltz, L.A. and Gustafson, R.R., Carbon, 1996, 34: 561

    Article  CAS  Google Scholar 

  6. Renjith, D., Reghunadhan, C.P., Nair, Sivadasan, P., Katherine, B.K., and Ninan, K.N., J. Appl. Polym. Sci., 2003, 88: 915

    Article  Google Scholar 

  7. Wu, G.P., Lu, C.X., Ling, L.C., Zhang, R., Wu, X.P., Ren, F.Z., and Li, K.X., J. Appl. Polym. Sci., 2005, 96: 1029

    Article  CAS  Google Scholar 

  8. Ko, T.H. and Lin, C.H., J. Appl. Polym. Sci., 1989, 37: 553

    Article  CAS  Google Scholar 

  9. Bahrami, S.H., Bajaj, P. and Sen, K.J., J. Appl. Polym. Sci., 2003, 88: 685

    Article  CAS  Google Scholar 

  10. Sivy, G.T. and Coleman, M.M., Carbon, 1981, 19: 137

    Article  CAS  Google Scholar 

  11. Min, B., Sreekumar, T.V., Uchida, T., and Kumar, S., Carbon, 2005, 43: 599

    Article  CAS  Google Scholar 

  12. Coleman, M.M., Sivy, G.T., Painter, P.C., Snyder, R.W., and Gordon, B., Carbon, 1983, 21: 255

    Article  CAS  Google Scholar 

  13. Grassie, N. and Mcguchan, R., Eur. Polym. J., 1972, 8: 257

    Article  CAS  Google Scholar 

  14. Bajaj, P., Bahrami, S.H., Sen, K. and Sreedumar, T.V., J. Appl. Polym., 1999, 74: 567

    Article  CAS  Google Scholar 

  15. Bahrami, S.H., Bajaj, P. and Sen, K., J. Appl. Polym Sci., 2003, 88: 685

    Article  CAS  Google Scholar 

  16. Devasia, R., Reghunadhan, C.P., Sivadasan, N.P. and Katherine B.K., J. Appl. Polym. Sci., 2003, 88: 915

    Article  CAS  Google Scholar 

  17. Ziegler, B., Herzog, K. and Salzer, R., J. Mol. Struct., 1995, 348: 457

    Article  CAS  Google Scholar 

  18. Bhat, G.S., Peebles, L.H. and Abhirman, J., J. Appl. Polym. Sci., 1993, 49: 2207

    Article  CAS  Google Scholar 

  19. Sivy, G.T., Gordon, B. and Coleman, M.M., Carbon, 1983, 21: 573

    Article  CAS  Google Scholar 

  20. Rangarnjan, P., Bhanu, V.A. and Godshall, D., Polymer, 2002, 43: 2699

    Article  Google Scholar 

  21. Rangarajan, P., Yang, J., Bhanu, V., Godshall, D., Mcgrath, J., Wilkes, G. and Baird, D., J. Appl. Polym. Sci., 2002, 85: 69

    Article  CAS  Google Scholar 

  22. Martin, S.C. and Liggat, J.J., Polym. Degrad. Stab., 2001, 74: 407

    Article  CAS  Google Scholar 

  23. Wu, X.P., Yang, Y.G., Ling, L.C., Li, Y.H. and He, F., New Carbon Materials, 2003, 18: 198

    Google Scholar 

  24. Gupta, A.K., Paliwal, D.K. and Bajaj, P., J. Appl. Polym. Sci., 1996, 59: 1819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-xiang Lu  (吕春祥).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Xp., Zhang, Xl., Lu, Cx. et al. Thermo-chemical reactions and structural evolution of acrylamide-modified polyacrylonitrile. Chin J Polym Sci 28, 367–376 (2010). https://doi.org/10.1007/s10118-010-9026-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-010-9026-9

Keywords

Navigation