Skip to main content
Log in

Global Solvability, Pattern Formation and Stability to a Chemotaxis-haptotaxis Model with Porous Medium Diffusion

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we deal with the following chemotaxis-haptotaxis system modeling cancer invasion with nonlinear diffusion

$$\left\{ {\matrix{{{u_t} = \Delta {u^m} - \chi \nabla \cdot (u\nabla v) - \xi \nabla \cdot (u\nabla \omega ) + \mu u(1 - u - \omega ),\,\,\,\,\,\,{\rm{in}}\,\,\Omega \times {\mathbb{R}^ + },} \hfill \cr {{v_t} - \Delta v + v = u,\,\,\,\,\,\,{\rm{in}}\,\,\Omega \times {\mathbb{R}^ + },} \hfill \cr {{\omega _t} = - v\omega ,\,\,\,\,\,\,{\rm{in}}\,\,\Omega \times {\mathbb{R}^ + },} \hfill \cr } } \right.$$

where Ω ⊂ ℝN is a bounded domain. We first supplement the results of global existence and uniform boundedness of solutions for the case \(m = {{2N} \over {N + 2}}\). Then for any m > 0 and any spatial dimension, we consider the stability of equilibrium, and find that the chemotaxis has a destabilizing effect, that is for the ODEs, or the diffusion-ODE system without chemotaxis, the solutions tend to a linearly stable uniform steady state (1, 1, 0). When the chemotactic coefficient χ is large, the equilibrium (1, 1, 0) become unstable. Then we study the existence of nontrivial stationary solutions via bifurcation techniques with χ being the bifurcation parameter, and obtain nonhomogeneous patterns. At last, we also investigate the stability of these bifurcation solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaplain, M. A. J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 1, 399–439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cieslak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions. J. Differential Equations, 252, 5832–5851 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crandall, M. G., Rabinowitz, P. H.: Bifurcation from simple eigenvalues. J. Funct. Anal., 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dumortir, F., Llibre, J., Artes, J. C.: Qualitative Theory of Plannar Differential Systems, Springer-Verlag, Berlin, 2006

    Google Scholar 

  5. Hansjorg, K.: Bifurcation Theory: An Introduction with Applications to PDEs. Applied Mathematical Sciences, Springer-Verlag, New York, 2012

    MATH  Google Scholar 

  6. Hillen, T., Painter, K. J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol., 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresberichte DMV, 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Horstmann, D., Wang, G.: Blow-up in a chemotaxis model without symmetry assumptions. European J. Appl. Math., 12, 159–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, C.: Boundedness and global solvability to a chemotaxis model with nonlinear diffusion. J. Differential Equations, 263, 5759–5772 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jin, C.: Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete Contin. Dyn. Syst. Ser. B, 23, 1675–1688 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Jin, C.: Global Classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanism. Bull. London Math. Soc., 50, 598–618 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keller, E., Segel, A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol., 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to PDEs. Applied Mathematical Sciences, Springer-Verlag, New York, 2003

    MATH  Google Scholar 

  14. Li, Y., Lankeit, J.: Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity, 29, 1564–1595 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré C Anal. Non. Linéaire, 31, 851–875 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schaaf, R.: Stationary solutions of chemotaxis systems. Trans. Amer. Math. Soc., 292, 531–556 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., 8, 349–367 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tao, Y., Winkler, M.: A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal., 43, 685–704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst., 32, 1901–1914 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao, Y., Winkler, M.: Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion. SIAM J. Math. Anal., 47, 4229–4250 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tello, J., Winkler, M.: A chemotaxis system with logistic source. Comm. Partial Differential Equations, 32(6), 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Turing, A. M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 273, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  23. Wang, Q., Song, Y., Shao, L.: Nonconstant positive steady states and pattern formation of 1d prey-taxis systems. J. Nonlinear Sci., 27, 71–97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Y.: Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. J. Differential Equations, 260, 1975–1989 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm. Partial Differential Equations, 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl., 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zheng, J.: Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete Contin. Dyn. Syst., 37, 627–643 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Hua Jin.

Additional information

Supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010336), NSFC (Grant Nos. 12271186, 12171166)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C.H. Global Solvability, Pattern Formation and Stability to a Chemotaxis-haptotaxis Model with Porous Medium Diffusion. Acta. Math. Sin.-English Ser. 39, 1597–1623 (2023). https://doi.org/10.1007/s10114-023-1184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-1184-0

Keywords

MR(2010) Subject Classification

Navigation