Skip to main content
Log in

Boundedness in a two-dimensional two-species cancer invasion haptotaxis model without cell proliferation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper reconsiders the two-species cancer invasion haptotaxis model without cell proliferation

$$\begin{aligned} {\left\{ \begin{array}{ll} c_{1t}=\Delta c_1-\chi _1\nabla \cdot (c_1\nabla v)-f(v)mc_1, \\ c_{2t}=\Delta c_2-\chi _2\nabla \cdot (c_2\nabla v)+f(v)mc_1, \\ \tau m_t=\Delta m+c_1+c_2-m, \\ v_t=-mv+\eta v(1-\alpha _1c_1-\alpha _2c_2-v) \end{array}\right. }\quad (\star ) \end{aligned}$$

in a bounded and smooth domain \(\Omega \subset {\mathbb {R}}^2\) with homogeneous Neumann conditions, where \(\chi _1,\chi _2,\eta >0\), \(\tau \in \{0,1\}\), \(f(v)\in C^1\left( [0,\infty );[0,\infty )\right) \) and \(f(0)=0\). It is well known that the absence of logistic source aggravates mathematical difficulties, which are overcome by constructing suitable Lyapunov functional. When the remodeling of ECM includes a competition with cancer cells (i.e., \(\alpha _1=\alpha _2=1\)), we prove that the associated initial-boundary value problem of \((\star )\) with \(\tau =0\) admits a globally bounded classical solution for suitably small \(\eta \), which complements the boundedness result on the homogenous Neumann problem of \((\star )\) with \(\tau =1\) obtained in Dai and Liu (SIAM J Math Anal 54:1–35, 2022). When the competition with cancer cells is taken no account in the re-establishment of ECM (i.e., \(\alpha _1=\alpha _2=0\)), we establish the global boundedness of classical solution to the corresponding initial-boundary value problem of \((\star )\) with \(\tau \in \{0,1\}\) for arbitrarily large \(\eta \), which is completely new. These results reveal the significant difference on the global boundedness of classical solution for the case whether or not the competition with cancer cells is contained in the remodeling of ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aznavoorian, S., Stracke, M.L., Krutzsch, H., Schiffmann, E., Liotta, L.A.: Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol. 110, 1427–1438 (1990)

    Google Scholar 

  2. Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 4, 593–646 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Belloquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bellomo, N., Outada, N., Soler, J., Tao, Y., Winkler, M.: Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision. Math. Models Methods Appl. Sci. 32, 713–792 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Brezis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^1\). J. Math. Soc. Japan 25, 565–590 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Cao, X.: Boundedness in a three-dimensional chemotaxis–haptotaxis model. Z. Angew. Math. Phys. 67, 11 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math. Models Methods Appl. Sci. 15, 1685–1734 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw. Heterog. Media 1, 399–439 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Tao, Y.: Large-data solutions in a three-dimensional chemotaxis–haptotaxis System with remodeling of non-diffusible attractant: the role of sub-linear production of diffusible signal. Acta Appl. Math. 163, 129–143 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Dai, F., Liu, B.: Optimal control and pattern formation for a haptotaxis model of solid tumor invasion. J. Frankl. Inst. 356, 9364–9406 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Dai, F., Liu, B.: Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling. J. Math. Anal. Appl. 483, 123583 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Dai, F., Liu, B.: Asymptotic stability in a quasilinear chemotaxis–haptotaxis model with general logistic source and nonlinear signal production. J. Differ. Equ. 269, 10839–10918 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Dai, F., Liu, B.: Global solvability and optimal control to a haptotaxis cancer invasion model with two cancer cell species. Appl. Math. Optim. 84, 2379–2443 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Dai, F., Liu, B.: Global boundedness for a \(N\)-dimensional two species cancer invasion haptotaxis model with tissue remodeling. Discrete contin. Dyn. Syst. Ser. B 27, 311–341 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Dai, F., Liu, B.: Global solvability and asymptotic stabilization in a three-dimensional Keller–Segel–Navier–Stokes system with indirect signal production. Math. Models Methods Appl. Sci. 31, 2091–2163 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Dai, F., Liu, B.: A new result for global solvability to a two species cancer invasion haptotaxis model with tissue remodeling. SIAM J. Math. Anal. 54, 1–35 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Dai, F., Liu, B.: Boundedness and asymptotic behavior in a Keller–Segel(–Navier)–Stokes system with indirect signal production. J. Differ. Equ. 314, 201–250 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Dai, F., Liu, B.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with indirect signal production. J. Differ. Equ. 333, 436–488 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Dai, F., Liu, B.: Global weak solutions in a three-dimensional two-species cancer invasion haptotaxis model without cell proliferation. J. Math. Phys. 63, 091501 (2022)

    MathSciNet  MATH  Google Scholar 

  20. De Araujo, A.L.A., De Magalhães, P.M.D.: Existence of solutions and local null controllability for a model of tissue invasion by solid tumors. SIAM J. Math. Anal. 50, 3598–3631 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  22. Giesselmann, J., Kolbe, N., Lukáčová-Medvid’ová, M., Sfakianakis, N.: Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. Discrete Contin. Dyn. Syst. Ser. B 23, 4397–4431 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1983)

    MATH  Google Scholar 

  24. Hellmann, N., Kolbe, N., Sfakianakis, N.: A mathematical insight in the epithelial-mesenchymal-like transition in cancer cells and its effect in the invasion of the extracellular matrix. Bull. Braz. Math. Soc. (N.S.) 47, 397–412 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Hillen, T., Painter, K.J., Winkler, M.: Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models Methods Appl. Sci. 23, 165–198 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Jia, Z., Yang, Z.: Global boundedness to a chemotaxis–haptotaxis model with nonlinear diffusion. Appl. Math. Lett. 103, 106192 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Jin, C.: Global classical solution and boundedness to a chemotaxis–haptotaxis model with re-establishment mechanisms. Bull. Lond. Math. Soc. 50, 598–618 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Jin, C.: Global existence and large time behavior of solutions to a haptotaxis model with self-remodeling mechanisms (in chinese). Sci. Sin. Math. 49, 1–14 (2019)

    Google Scholar 

  30. Jin, C.: Global classical solutions and convergence to a mathematical model for cancer cells invasion and metastatic spread. J. Differ. Equ. 269, 3987–4021 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Jin, C.: Global solvability and stabilization to a cancer invasion model with remodelling of ECM. Nonlinearity 33, 5049–5079 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Jin, H., Xiang, T.: Negligibility of haptotaxis effect in a chemotaxis–haptotaxis model. Math. Models Methods Appl. Sci. 31, 1373–1417 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Kalluri, R., Weinberg, R.A.: The basics of epithelial-mesenchymal transition. J. Clin. Invest. 6, 1420–1428 (2009)

    Google Scholar 

  34. Ke, Y., Zheng, J.: A note for global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. Nonlinearity 31, 4602–4620 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Kolbe, N., Sfakianakis, N., Stinner, C., Surulescu, C., Lenz, J.: Modeling multiple taxis: tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete Contin. Dyn. Syst. Ser. B 26, 443–481 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Kong, D., Li, Y., Wang, Z., Sarkar, F.H.: Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3, 716–729 (2011)

    Google Scholar 

  37. Li, J., Wang, Y.: Boundedness in a haptotactic cross-diffusion system modeling oncolytic virotherapy. J. Differ. Equ. 270, 94–113 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Liotta, L.A., Stetler-Stevenson, W.G.: Tumor invasion and metastasis as targets for cancer therapy. Cancer Res. 51, 5054–5059 (1991)

    Google Scholar 

  39. Liotta, L.A., Clair, T.: Checkpoint for invasion. Nature 405, 287–288 (2000)

    Google Scholar 

  40. Liţcanu, G., Morales-Rodrigo, C.: Asymptotic behavior of global solutions to a model of cell invasion. Math. Models Methods Appl. Sci. 20, 1721–1758 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Liu, J., Zheng, J., Wang, Y.: Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source. Z. Angew. Math. Phys. 67, 21 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Liu, L., Zheng, J., Li, Y., Yan, W.: A new (and optimal) result for the boundedness of a solution of a quasilinear chemotaxis–haptotaxis model (with a logistic source). J. Math. Anal. Appl. 491, 124231 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Mani, S.A., Guo, W., Liao, M.J., et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)

    Google Scholar 

  44. Marciniak-Czochra, A., Ptashnyk, M.: Boundedness of solutions of a haptotaxis model. Math. Models Methods Appl. Sci. 20, 449–476 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)

  46. Pang, P.Y.H., Wang, Y.: Global existence of a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 263, 1269–1292 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Pang, P.Y.H., Wang, Y.: Global boundedness of solutions to a chemotaxis–haptotaxis model with tissue remodeling. Math. Models Methods Appl. Sci. 28, 2211–2235 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Pang, P.Y.H., Wang, Y.: Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis–haptotaxis. Math. Models Methods Appl. Sci. 29, 1387–1412 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Ren, G., Wei, J.: Analysis of a two-dimensional triply haptotactic model with a fusogenic oncolytic virus and syncytia. Z. Angew. Math. Phys. 72, 134 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L.: Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    Google Scholar 

  51. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    MATH  Google Scholar 

  52. Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Stinner, C., Surulescu, C., Uatay, A.: Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Math. Models Methods Appl. Sci. 26, 2163–2201 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Tao, Y.: Global existence for a haptotaxis model of cancer invasion with tissue remodeling. Nonlinear Anal. Real World Appl. 12, 418–435 (2011)

    MathSciNet  MATH  Google Scholar 

  55. Tao, Y.: Boundedness in a two-dimensional chemotaxis–haptotaxis system. arXiv:1407.7382v1

  56. Tao, Y., Zhu, G.: Global solution to a model of tumor invasion. Appl. Math. Sci. 1, 2385–2398 (2007)

    MathSciNet  MATH  Google Scholar 

  57. Tao, Y., Wang, M.: A combined chemotaxis–haptotaxis system: the role of logistic source. SIAM J. Math. Anal. 41, 1533–1558 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Tao, Y., Winkler, M.: Boundedness and stabilization in a multi-dimensional chemotaxis–haptotaxis model. Proc. R. Soc. Edinb. Sect. A 144, 1067–1084 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Tao, Y., Winkler, M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27, 1225–1239 (2014)

    MathSciNet  MATH  Google Scholar 

  61. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Tao, Y., Winkler, M.: Large time behavior in a multi-dimensional chemotaxis–haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47, 4229–4250 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis system with haptoattractant remodeling: boundedness enforced by mild saturation of signal production. Commun. Pure Appl. Anal. 18, 2047–2067 (2019)

    MathSciNet  MATH  Google Scholar 

  64. Tao, Y., Winkler, M.: Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy. J. Differ. Equ. 268, 4973–4997 (2020)

    MathSciNet  MATH  Google Scholar 

  65. Tao, Y., Winkler, M.: A critical virus production rate for blow-up suppression in a haptotaxis model for oncolytic virotherapy. Nonlinear Anal. 198, 111870 (2020)

    MathSciNet  MATH  Google Scholar 

  66. Tao, Y., Winkler, M.: Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete Contin. Dyn. Syst. 41, 439–454 (2021)

    MathSciNet  MATH  Google Scholar 

  67. Tao, Y., Winkler, M.: A critical virus production rate for efficiency of oncolytic virotherapy. Eur. J. Appl. Math. 32, 301–316 (2021)

    MathSciNet  MATH  Google Scholar 

  68. Tao, Y., Winkler, M.: Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy. Proc. R. Soc. Edinb. Sect. A 152, 81–101 (2022)

    MathSciNet  MATH  Google Scholar 

  69. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    MathSciNet  MATH  Google Scholar 

  70. Walker, C., Webb, G.: Global existence of classical solutions for a haptotaxis model. SIAM J. Math. Anal. 38, 1694–1713 (2007)

    MathSciNet  MATH  Google Scholar 

  71. Wang, Y.: Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. J. Differ. Equ. 260, 1975–1989 (2016)

    MathSciNet  MATH  Google Scholar 

  72. Wang, Y., Ke, Y.: Large time behavior of solution to a fully parabolic chemotaxis–haptotaxis model in higher dimensions. J. Differ. Equ. 260, 6960–6988 (2016)

    MathSciNet  MATH  Google Scholar 

  73. Wang, L., Mu, C., Hu, X., Tian, Y.: Boundedness in a quasilinear chemotaxis–haptotaxis system with logistic source. Math. Methods Appl. Sci. 40, 3000–3016 (2017)

    MathSciNet  MATH  Google Scholar 

  74. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  75. Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    MathSciNet  MATH  Google Scholar 

  76. Winkler, M.: Singular structure formation in a degenerate haptotaxis model involving myopic diffusion. J. Math. Pures Appl. 112, 118–169 (2018)

    MathSciNet  MATH  Google Scholar 

  77. Winkler, M., Surulescu, C.: Global weak solutions to a strongly degenerate haptotaxis model. Commun. Math. Sci. 15, 1581–1616 (2017)

    MathSciNet  MATH  Google Scholar 

  78. Winkler, M., Stinner, C.: Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete Contin. Dyn. Syst. 40, 4039–4058 (2020)

    MathSciNet  MATH  Google Scholar 

  79. Xiang, T., Zheng, J.: A new result for 2D boundedness of solutions to a chemotaxis–haptotaxis model with/without sub-logistic source. Nonlinearity 32, 4890–4911 (2019)

    MathSciNet  MATH  Google Scholar 

  80. Xu, H., Zhang, L., Jin, C.: Global solvability and large time behavior to a chemotaxis–haptotaxis model with nonlinear diffusion. Nonlinear Anal. Real World Appl. 46, 238–256 (2019)

    MathSciNet  MATH  Google Scholar 

  81. Zheng, J.: Boundedness of solutions to a quasilinear higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. Discrete Contin. Dyn. Syst. 37, 627–643 (2017)

    MathSciNet  MATH  Google Scholar 

  82. Zheng, J., Wang, Y.: Boundedness of solutions to a quasilinear chemotaxis–haptotaxis model. Comput. Math. Appl. 71, 1898–1909 (2016)

    MathSciNet  MATH  Google Scholar 

  83. Zheng, J., Ke, Y.: Large time behavior of solutions to a fully parabolic chemotaxis–haptotaxis model in \(N\) dimensions. J. Differ. Equ. 266, 1969–2018 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep and sincere gratitude to the anonymous referee for very insightful comments and helpful suggestions which resulted in a substantial improvement in this work. F. Dai was supported by the NNSF of China (No. 12201230) and the China Postdoctoral Science Foundation (Nos. 2021M700049, 2022T150238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjie Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Ma, L. Boundedness in a two-dimensional two-species cancer invasion haptotaxis model without cell proliferation. Z. Angew. Math. Phys. 74, 54 (2023). https://doi.org/10.1007/s00033-023-01942-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-01942-w

Keywords

Mathematics Subject Classification

Navigation