Skip to main content
Log in

Global Fujita—Kato’s Type Solutions and Long-time Behavior for the Multidimensional Chemotaxis Model

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We establish the global well-posedness for the multidimensional Chemotaxis model with some classes of large initial data, especially the case when the rate of variation of ln v0 (v0 is the chemical concentration) contains high oscillation and the initial density near the equilibrium is allowed to have large oscillation in 3D. Besides, we show the optimal time-decay rates of the strong solutions under an additional perturbation assumption, which include specially the situations of d = 2, 3 and improve the previous time-decay rates. Our method mainly relies on the introduce of the effective velocity and the application of the localization in Fourier spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi, H.: Équation de Navier—Stokes avec densitéetviscosité variables dans l’espace critique. Rev. Mat. Iberoamericana, 23, 537–586 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J. Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Berlin/Heidelberg, 2011

    Book  Google Scholar 

  3. Biler, P.: Singularities of Solutions to Chemotaxis Systems, De Gruyter, Berlin, Boston, 2019

    Book  Google Scholar 

  4. Biler, P., Karch, G.: Blow-up of solutions to generalized Keller—Segel model. J. Evol. Equ., 10, 247–262 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cannone, M.: Ondelettes, paraproduits et Navier—Stokes, Nouveaux essais, Diderot éditeurs, Paris, 1995

    MATH  Google Scholar 

  6. Cannone, M.: Harmonic Analysis Tools for Solving the Incompressible Navier—Stokes Equations, Handbook of Mathematical fluid Dynamics, Vol. III, North-Holland, Amsterdam, 2004

    Google Scholar 

  7. Cannone, M.: A generalization of a theorem by Kato on Navier—Stokes equations. Rev. Mat. Iberoamericana, 13, 515–141 (1997)

    Article  MathSciNet  Google Scholar 

  8. Cannone, M., Meyer, Y., Planchon, F.: Solutions auto-similaires des équations de Navier—Stokes. Séminaire “Équations aux Dérivées Partielle” de l’École polytechnique, Exposé VIII, 1–10 (1993–1994)

  9. Chen, Q., Hao, X.: Large global solutions to the three dimensional chemotaxis-Navier—Stokes equations slowly varying in one direction. Appl. Math. Lett., 112, 106773 (2021)

    Article  MathSciNet  Google Scholar 

  10. Chen, Q., Miao, C., Zhang Z.: Global well-posedness for compressible Navier—Stokes equations with highly oscillating initial velocity. Comm. Pure Appl. Math., 63, 1173–1224 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Comm. Math. Phys., 271, 821–838 (2007)

    Article  MathSciNet  Google Scholar 

  12. Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimemsions. Milan J. Math., 72, 1–28 (2004)

    Article  MathSciNet  Google Scholar 

  13. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier—Stokes equations in the critical Lp framework. Arch. Ration. Mech. Anal., 224, 53–90 (2017)

    Article  MathSciNet  Google Scholar 

  14. Fang, D., Zhang, T., Zi, R.: Global solutions to the isentropic compressible Navier—Stokes equations with a class of large initial data. SIAM J. Math. Anal., 50, 4983–5026 (2018)

    Article  MathSciNet  Google Scholar 

  15. Fujita, H., Kato, T.: On the Navier—Stokes initial value problem I. Arch. Ration. Mech. Anal., 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  16. Hao, C.: Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces. Z. Angew. Math. Phys., 63, 825–834 (2012)

    Article  MathSciNet  Google Scholar 

  17. Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal., 202, 427–460 (2011)

    Article  MathSciNet  Google Scholar 

  18. He, H., Zhang, Q.: Global existence of weak solutions for the 3D chemotaxis-Navier—Stokes equations. Nonlinear Anal. Real World Appl., 35, 336–349 (2017)

    Article  MathSciNet  Google Scholar 

  19. Hoff, D.: Global solutions of the Navier—Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differential Equations, 120, 215–254 (1995)

    Article  MathSciNet  Google Scholar 

  20. Horstmann, D.: From 1970 until present: the Keller—Segel model in chemotaxis and its consequences: I. Jahresber. Deutsch. Math.-Verein., 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Lemarié-Rieusset, P. G.: Recent Developments in the Navier—Stokes Problem. Res. Notes Math., Vol. 43, Chapman & Hall/CRC, Boca Raton, FL, 2002

    Google Scholar 

  22. Lemarié-Rieusset, P. G.: The Navier—Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016

    Book  Google Scholar 

  23. Li, D., Li, T., Zhao, K.: On a hyperbolic-parabolic system modeling chemotaxis. Math. Models Methods Appl. Sci., 21, 1631–1650 (2011)

    Article  MathSciNet  Google Scholar 

  24. Tao, Y., Winkler, M.: A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal., 43, 685–704 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., Hillen, T.: Shock formation in a chemotaxis model. Math. Methods Appl. Sci., 31, 45–70 (2008)

    Article  MathSciNet  Google Scholar 

  26. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier—)Stokes system modeling cellular swimming in fluid drops. Comm. Partial Differential Equations, 37, 319–352 (2012)

    Article  MathSciNet  Google Scholar 

  27. Xin, Z., Xu, J.: Optimal decay for the compressible Navier—Stokes equations without additional smallness assumptions. J. Differential Equations, 274, 543–575 (2020)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemptaxis-Navier—Stokes equations. SIAM J. Math. Anal., 46, 3078–3105 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Q: Local well-posedness for the chemotaxis-Navier—Stokes equations in Besov spaces. Nonlinear Anal. Real World Appl., 17, 89–100 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Nan Hao.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 12071043), the National Key Research and Development Program of China (Grant No. 2020YFA0712900)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q.L., Hao, X.N. & Li, J.Y. Global Fujita—Kato’s Type Solutions and Long-time Behavior for the Multidimensional Chemotaxis Model. Acta. Math. Sin.-English Ser. 38, 311–330 (2022). https://doi.org/10.1007/s10114-022-1001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-1001-1

Keywords

MR(2010) Subject Classification

Navigation