Skip to main content

Advertisement

Log in

Influence of climate variables on the concentration of Escherichia coli in the Rhine, Meuse, and Drentse Aa during 1985–2010

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

This study evaluates the relationship between the climate variables temperature and precipitation and the concentration of Escherichia coli bacteria in the Rhine, Meuse, and Drentse Aa for the period 1985–2010. Data from 4,679 E. coli concentration measurements spread over a total of 13 locations in these three river systems were used in this study. The variables water temperature, precipitation, and river discharge were correlated with E. coli measurements. Water temperature was found to correlate negatively, and this is in line with expectations that higher temperature increases microorganism die-off. Precipitation and discharge were found to correlate positively, and this is in line with expectations that runoff from agricultural lands brings along pathogens from manure and increases the chance of sewer overflows. The data of the Meuse were fit to a linear model that explained E. coli concentrations from a time component, the climate variables and a locations dummy variable, in order to assess the relative contribution of the different variables. This model had an R 2 of 0.49, meaning that climate variables and location can account for nearly half of the observed variation in E. coli concentrations in surface water, even when other factors, such as land-use variables, are not taken into account. The effect of the different climate variables was found to differ with scale, with temperature being relatively important at a local scale, and discharge being mainly of importance at larger scales. From our results, we expect that climate change, mainly the projected increased precipitation, may increase E. coli concentrations overall. Other waterborne pathogens that follow similar transmission pathways as E. coli may be similarly impacted by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bach SJ, McAllister TA, Veira DM, Gannon VPJ, Holley RA (2002) Transmission and control of Escherichia coli O157:H7—a review. Can J Anim Sci 82:475–490

    Article  Google Scholar 

  • Belz JU (2010) The discharge regime of the Rhine and its tributaries in the 20th century—analysis, changes, trends. In: CHR ICftHotRb (ed). International Commission for the Hydrology of the Rhine basin (CHR)

  • Blum D, Huttly SR, Okoro JI, Akujobi C, Kirkwood BR, Feachem RG (1987) The bacteriological quality of traditional water sources in north-eastern Imo State, Nigeria. Epidemiol Infect 99:429–437

    Article  CAS  Google Scholar 

  • Bosch A (1998) Human enteric viruses in the water environment: a minireview. Int Microbiol 1:191–196

    CAS  Google Scholar 

  • Campbell-Lendrum D, Woodruff R (2006) Comparative risk assessment of the burden of disease from climate change. Environ Health Perspect 114:1935–1941

    Google Scholar 

  • CBS Statistics Netherlands, PBL Netherlands Environmental Assessment Agency, Wageningen UR (2011) Kaart bodemgebruik van Nederland, 2008 (indicator 0061, versie 08, 9 Dec 2011). 2012. CBS, Den Haag; Planbureau voor de Leefomgeving, Den Haag/Bilthoven en Wageningen UR, Wageningen

  • CBS Statistics Netherlands, PBL Netherlands Environmental Assessment Agency, Wageningen UR (2012) Capaciteit van afvalwaterzuiveringsinstallaties, 1980–2010 (indicator 0044, versie 13, 27 Augustus 2012). CBS, Den Haag; Planbureau voor de Leefomgeving, Den Haag/Bilthoven en Wageningen UR, Wageningen

  • Cho KH, Cha SM, Kang J-H, Lee SW, Park Y, Kim J-W et al (2010) Meteorological effects on the levels of fecal indicator bacteria in an urban stream: a modeling approach. Water Res 44:2189–2202

    Article  CAS  Google Scholar 

  • Crowther J, Kay D, Wyer MD (2001) Relationships between microbial water quality and environmental conditions in coastal recreational waters: the Fylde coast, UK. Water Res 35:4029–4038

    Article  CAS  Google Scholar 

  • Crowther J, Kay D, Wyer MD (2002) Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices. Water Res 36:1725–1734

    Article  CAS  Google Scholar 

  • Crowther J, Wyer MD, Bradford M, Kay D, Francis CA, Knisel WG (2003) Modelling faecal indicator concentrations in large rural catchments using land use and topographic data. J Appl Microbiol 94:962–973

    Article  CAS  Google Scholar 

  • Davies CM, Evison LM (1991) Sunlight and the survival of enteric bacteria in natural waters. J Appl Microbiol 70:265–274

    CAS  Google Scholar 

  • De Jong B (2006) Klimaatverandering en de Drentsche Aa: Verkenning effect op afvoer en bestrijdingsmiddelen. KWR Watercycle Research Institute, Nieuwegein

    Google Scholar 

  • Directoraat-Generaal Water, Directoraat-Generaal Milieubeheer (2010) Inzameling, transport en behandeling van afvalwater in Nederland, situatie per 31 december 2008. Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Water

  • FOD Economie (2010a) Bodemgebruik België 2009. Algemene Directie Statistiek en Economische Informatie, volgens de definities van OESO/Eurostat 2012

  • FOD Economie (2010b) Vervuiling en Zuivering. Algemene Directie Statistiek en Economische Informatie, volgens administratieve gegevens of volgens de Volks- en Woningtelling 2012

  • Ferguson CM, Coote BG, Ashbolt NJ, Stevenson IM (1996) Relationships between indicators, pathogens and water quality in an estuarine system. Water Res 30:2045–2054

    Article  CAS  Google Scholar 

  • Freeman JT, Anderson DJ, Sexton DJ (2009) Seasonal peaks in Escherichia coli infections: possible explanations and implications. Clin Microbiol Infect 15:951–953

    Article  CAS  Google Scholar 

  • Garzio-Hadzick A, Shelton DR, Hill RL, Pachepsky YA, Guber AK, Rowland R (2010) Survival of manure-borne E. coli in streambed sediment: effects of temperature and sediment properties. Water Res 44:2753–2762

    Article  CAS  Google Scholar 

  • Gautam R, Bani-Yaghoub M, Neill WH, Dopfer D, Kaspar C, Ivanek R (2011) Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: example of Escherichia coli O157:H7 in a dairy herd. Prev Veterinary Med 102:10–21

    Article  Google Scholar 

  • Geldreich EE, Best LC, Kenner BA, Vandonse DJ (1968) Bacteriological aspects of stormwater pollution. J Water Pollut Control Fed 40:1861

    CAS  Google Scholar 

  • Gibson CJ, Stadterman KL, States S, Sykora J (1998) Combined sewer overflows: a source of Cryptosporidium and Giardia? Water Sci Technol 38:67–72

    Article  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  Google Scholar 

  • Hong H, Qiu J, Liang Y (2010) Environmental factors influencing the distribution of total and fecal coliform bacteria in six water storage reservoirs in the Pearl River delta region, China. J Environ Sci 22:663–668

    Article  Google Scholar 

  • Hunter P (2003) Climate change and waterborne and vector–borne disease. J Appl Microbiol 94:37–46

    Article  Google Scholar 

  • Kampf R, Schreijer M, Toet S, Verhoeven JTA (1997) Van effluent tot bruikbaar oppervlaktewater NVA symposium: Biologisch gereinigd effluent; grondstof of eindproduct

  • Kay D, Mcdonald A (1983) Predicting coliform concentrations in upland impoundments—design and calibration of a multivariate model. Appl Environ Microbiol 46:611–618

    CAS  Google Scholar 

  • Kay D, Wyer M, Crowther J, Stapleton C, Bradford M, McDonald A et al (2005) Predicting faecal indicator fluxes using digital land use data in the UK’s sentinel water framework directive catchment: the Ribble study. Water Res 39:3967–3981

    Article  CAS  Google Scholar 

  • Kay D, Crowther J, Stapleton CM, Wyer MD, Fewtrell L, Anthony S et al (2008) Faecal indicator organism concentrations and catchment export coefficients in the UK. Water Res 42:2649–2661

    Article  CAS  Google Scholar 

  • Kistemann T, Classen T, Koch C, Dangendorf F, Fischeder R, Gebel J et al (2002) Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Appl Environ Microbiol 68:2188–2197

    Article  CAS  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • KNMI (2011a) Waargenomen veranderingen in neerslag 2011. KNMI (Royal Netherlands Meteorological Institute), De Bilt

  • KNMI (2011b) Waargenomen veranderingen in temperatuur 2011. KNMI (Royal Netherlands Meteorological Institute), De Bilt

  • Mallin MA, Williams KE, Esham EC, Lowe RP (2000) Effect of human development on bacteriological water quality in coastal watersheds. Ecol Appl 10:1047–1056

    Article  Google Scholar 

  • Medema GJ, Bahar M, Schets FM (1997) Survival of cryptosporidium parvum, Escherichia coli, faecal enterococci and clostridium perfringens in river water: influence of temperature and autochthonous microorganisms. Water Sci Technol 35:249–252

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collings WD, Friedlingstein P, Gaye AT, Gregory JM et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H et al (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Chang 49:105–128

    Article  CAS  Google Scholar 

  • Mohseni O, Stefan HG (1999) Stream temperature/air temperature relationship: a physical interpretation. J Hydrol 218:128–141

    Article  Google Scholar 

  • Nichols G, Lane C, Asgari N, Verlander NQ, Charlett A (2009) Rainfall and outbreaks of drinking water related disease and in England and Wales. J Water Health 7:1–8

    Article  Google Scholar 

  • Oliver DM, Heathwaite AL, Fish RD, Chadwick DR, Hodgson CJ, Winter M et al (2009) Scale appropriate modelling of diffuse microbial pollution from agriculture. Prog Phys Geogr 33:358–377

    Article  Google Scholar 

  • Olyphant GA, Whitman RL (2004) Elements of a predictive model for determining beach closures on a real time basis: the case of 63rd Street Beach Chicago. Environ Monit Assess 98:175–190

    Article  Google Scholar 

  • Patz JA, Olson SH, Uejio CK, Gibbs HK (2008) Disease emergence from global climate and land use change. Med Clin N Am 92:1473

    Article  Google Scholar 

  • Pfister L, Kwadijk J, Musy A, Bronstert A, Hoffmann L (2004) Climate change, land use change and runoff prediction in the Rhine–Meuse basins. River Res Appl 20:229–241

    Article  Google Scholar 

  • Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA (2001) Climate variability and change in the United States: potential impacts on water- and food-borne diseases caused by microbiologic agents. Environ Health Perspect 109:211–221

    Article  Google Scholar 

  • Schets FM, Nobel PJ, Strating S, Mooijman KA, Engels GB, Brouwer A (2002) EU drinking water directive reference methods for enumeration of total coliforms and Escherichia coli compared with alternative methods. Lett Appl Microbiol 34:227–231

    Article  CAS  Google Scholar 

  • Schijven JF, de Roda Husman AM (2005) Effect of climate changes on waterborne disease in The Netherlands. Water Sci Technol 51:79–87

    CAS  Google Scholar 

  • Schilling KE, Zhang YK, Hill DR, Jones CS, Wolter CF (2009) Temporal variations of Escherichia coli concentrations in a large Midwestern river. J Hydrol 365:79–85

    Article  Google Scholar 

  • Schulz CJ, Childers GW (2011) Estimating changes in river faecal coliform loading using nonparametric multiplicative regression. J Water Health 9:117–127

    Article  Google Scholar 

  • Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infect Dis 9:365–375

    Article  Google Scholar 

  • Senhorst HA, Zwolsman JJ (2005) Climate change and effects on water quality: a first impression. Water Sci Technol 51:53–59

    CAS  Google Scholar 

  • Smith K (1968) Some thermal characteristics of two rivers in the pennine area of Northern England. J Hydrol 6:405–416

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis AKB et al (2007) Climate change 2007: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Cambridge

    Google Scholar 

  • Stott R, Davies-Colley R, Nagels J, Donnison A, Ross C, Muirhead R (2011) Differential behaviour of Escherichia coli and Campylobacter spp. in a stream draining dairy pasture. J Water Health 9:59–69

    Article  Google Scholar 

  • Tryland I, Robertson L, Blankenberg AGB, Lindholm M, Rohrlack T, Liltved H (2011) Impact of rainfall on microbial contamination of surface water. Int J Clim Chang Strateg Manag 3:361–373

    Article  Google Scholar 

  • Tu M, Hall MJ, de Laat PJM, de Wit MJM (2004) Detection of long-term changes in precipitation and discharge in the Meuse basin. In: International conference of GIS and remote sensing in hydrology, water resources and environment (ICGRSHWE). IAHS Publication 289 Three Gorges Dam, China, 2003, pp 169–177

  • Van den Hurk B, Klein Tank A, Lenderink G, Van Ulden A, Van Oldenborgh GJ, Katsman C, et al (2006) KNMI climate change scenarios 2006 for the Netherlands. KNMI Scientific Report WR 2006-01. KNMI, De Bilt

  • Van Lieverloo JHM, Blokker EJM, Medema G (2007) Quantitative microbial risk assessment of distributed drinking water using faecal indicator incidence and concentrations. J Water Health 5:131–149

    Article  Google Scholar 

  • Vital M, Hammes F, Egli T (2008) Escherichia coli O157 can grow in natural freshwater at low carbon concentrations. Environ Microbiol 10:2387–2396

    Article  CAS  Google Scholar 

  • Wang G, Doyle MP (1998) Survival of enterohemorrhagic Escherichia coli O157:H7 in water. J Food Prot® 61:662–667

    Google Scholar 

  • Wang G, Zhao T, Doyle MP (1996) Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces. Appl Environ Microbiol 62:2567–2570

    CAS  Google Scholar 

  • Wells JG, Shipman LD, Greene KD, Sowers EG, Green JH, Cameron DN et al (1991) Isolation of Escherichia coli serotype O157–H7 and other shiga-like-toxin-producing Escherichia coli from dairy-cattle. J Clin Microbiol 29:985–989

    CAS  Google Scholar 

  • Wilkes G, Edge T, Gannon V, Jokinen C, Lyautey E, Medeiros D et al (2009) Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Res 43:2209–2223

    Article  CAS  Google Scholar 

  • Wu J, Rees P, Dorner S (2011) Variability of E. coli density and sources in an urban watershed. J Water Health 9:94–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Rijkswaterstaat Waterdienst, RIWA-Meuse, RIWA-Rhine, Waterschap Hunze en Aa’s, Waterlaboratorium Noord, and RMI Belgium are thanked for kindly providing data on river discharge, water temperature, and E. coli concentrations in surface water and precipitation. Furthermore, Dr. T.M.H. Suylen (Evides), Mr. Bosboom (Aqualab Zuid), Prof. Dr. G.J.Medema (KWR), Drs. J. Roelsma (Alterra), Ing. A. Bannink (RIWA-Meuse), Ing. M. van der Weijden (Rijkswaterstaat Waterdienst), Drs. G. Wubbels (Waterlaboratorium Noord), Dr. E.J. Bakker (Biometris, Wageningen University), and M. Gruwé (Aquafin) are thanked for their help with obtaining data and answering questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie C. Vermeulen.

Appendix

Appendix

See Table 5.

Table 5 Coefficient estimates of model runs of individual locations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeulen, L.C., Hofstra, N. Influence of climate variables on the concentration of Escherichia coli in the Rhine, Meuse, and Drentse Aa during 1985–2010. Reg Environ Change 14, 307–319 (2014). https://doi.org/10.1007/s10113-013-0492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0492-9

Keywords

Navigation