Skip to main content

Advertisement

Log in

Combining point and regular lattice data in geostatistical interpolation

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

This work studies how to include both point and areal measurements when estimating gaussian fields by kriging. To achieve this objective, three geostatistical approaches are considered for the areal distributed data: (a) regionalized measurements that are geographically referenced by their centroid as if they were point measurements, (b) regionalized measurements that are explicitly accounted by formally computing all the needed covariances (i.e. area-to-area, area-to-point and point-to-point covariances, respectively) and (c) regionalized measurements that are used as an external drift variable. Results indicate that the measurement error corresponding to the areal data plays a key role to decide when the spatial support of the areal measurements is relevant. For small measurement errors, it is necessary to explicitly consider the spatial support of the areal measurements to avoid large estimation variances. For large measurement errors, the difference between defining areal measurements by using their actual spatial support and defining areal measurements by referencing them by their centroids (i.e. gravity centre) is small. In this situation, it is possible to use the areal measurements as an external drift instead of merging both types of information (i.e. point and areal data) as measurements for kriging. In this case, the cross-validation analysis shows a larger coefficient of determination, similar average kriging variance and smaller mean square error than the obtained in the case of merging point and areal measurements for kriging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baafi EY, Schofield NA (eds) (1997) Geostatistics Wollongong’96, vol 1. Springer, Berlin

    Google Scholar 

  • Berke O (2004) Exploratory disease mapping: kriging the spatial risk function from regional count data. Int J Health Geogr 3(1):18. doi:10.1186/1476-072X-3-18

    Article  Google Scholar 

  • Bormann N, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data. QJR Meteorol Soc 136(649):1036–1050. doi:10.1002/qj.616

    Article  Google Scholar 

  • Bourgault G (1994) Robustness of noise filtering by kriging analysis. Math Geol 26:733–752

    Article  Google Scholar 

  • Brandes EA, Zhang G, Vivekanandan J (2002) Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J Appl Meteorol 41:674–685

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2011a) Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J Hydrol 401:190–202

    Article  Google Scholar 

  • Chen C, Haerter JO, Hagemann S, Piani C (2011b) On the contribution of statistical bias correction to the uncertainty in the projected hydrological cycle. Geophys Res Lett 38:L20403. doi:10.1029/2011GL049318

    Google Scholar 

  • Chiles JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Ciach GJ (2003) Local random errors in tipping-bucket rain gauge measurements. J Atmos Ocean Technol 20:752–759. doi:10.1175/1520-0426(2003)20<752:LREITB>2.0.CO;2

    Article  Google Scholar 

  • Cohen Liechti T, Matos JP, Boillat JL, Schleiss AJ (2012) Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol Earth Syst Sci 16(2):489–500

    Article  Google Scholar 

  • Cressie N (1996) Change of support and the modifiable areal unit problem. Geogr Syst 3:159–180

    Google Scholar 

  • De Marsily G (1986) Quantitative hydrogeology. Academic, San Diego

    Google Scholar 

  • Deutsch CV, Journel AG (1992) GSLIB: geostatistical software library and user’s guide. Oxford Univ. Press, New York

    Google Scholar 

  • Dobler C, Hagemann S, Wilby RL, Stötter J (2012) Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol Earth Syst Sci 16:4343–4360. doi:10.5194/hess-16-4343-2012

    Article  Google Scholar 

  • Garand L, Heilliette S, Buehner M (2007) Interchannel error correlation associated with AIRS radiance observations: inference and impact in data assimilation. J Appl Meteorol 46:714–725. doi:10.1175/JAM2496.1

    Article  Google Scholar 

  • Gomez-Hernandez J, Journel AG (1993) Joint sequential simulation of multigaussian fields. In: Soares A (ed) Geostatistics TROIA’92. Kluwer, Dordrecht, pp 85–94

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, London

    Google Scholar 

  • Goovaerts P (2010) Combining areal and point data in geostatistical interpolation: applications to soil science and medical geography. Math Geosci 42(5):535–554. doi:10.1007/s11004-010-9286-5

    Article  Google Scholar 

  • Goovaerts P (2011) A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties. Eur J Soil Sci 62:371–380. doi:10.1111/j.1365-2389.2011.01368.x

    Article  Google Scholar 

  • Goovaerts P, Jacquez GM, Greiling D (2005) Exploring scale dependent correlations between cancer mortality rates using factorial kriging and population-weighted semivariograms. Geogr Anal 37(2):152–182. doi:10.1111/j.1538-4632.2005.00634.x

    Article  Google Scholar 

  • Gotway CA, Young LJ (2004) A geostatistical approach to linking geographically-aggregated data from different sources. Technical report # 2004-012, University of Florida

  • Gotway CA, Young LJ (2005) Change of support: an inter-disciplinary challenge. geoENV V—Geostatistics for environmental applications. Springer, Berlin, pp 1–13

    Google Scholar 

  • Habib E, Krajewski WF, Kruger A (2001) Sampling errors of tipping-bucket rain gauge measurements. J Hydrol Eng 6(2):159–166

    Article  Google Scholar 

  • Habib E, Ciach GJ, Krajewski WF (2004) A method for filtering out raingauge representativeness errors from the verification distributions of radar and raingauge rainfall. Adv Water Resour 27(10):967–980

    Article  Google Scholar 

  • Habib EH, Meselhe EA, Aduvala AV (2008) Effect of local errors of tipping-bucket rain gauges on rainfall–runoff simulations. J Hydrol Eng 13(6):488–496. doi:10.1061/(ASCE)1084-0699(2008)13:6(488)

    Article  Google Scholar 

  • Hagemann S, Berg P, Christensen JH, Härter J (2010) Analysis of existing climate model results over Europe. WATCH technical report number 7. http://www.eu-watch.org/media/default.aspx/emma/org/10648756/Technical+Report+Number+07+Analysis+of+existing+climate+model+results+over+Europe+(WB3.2).pdf. Last access 22/04/2015

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Koch GS, Link RF (1970) Statistical analysis of geological data. Wiley, London

    Google Scholar 

  • Kyriakidis P (2004) A geostatistical framework for area-to-point spatial interpolation. Geogr Anal 36(2):259–289

    Article  Google Scholar 

  • Ledbetter R, Prudhomme C, Arnell N (2012) A method for incorporating climate variability in climate change impact assessments: sensitivity of river flows in the Eden catchment to precipitation scenarios. Clim Chang 113:1–21

    Article  Google Scholar 

  • Liu Y, Journel AG (2009) A package for geostatistical integration of coarse and fine scale data. Comput Geosci 35(3):527–547

    Article  Google Scholar 

  • Ma YZ (1993) Comment on application of spatial filter theory to kriging. Math Geol 25(3):399–403

    Article  Google Scholar 

  • Ma YZ, Royer JJ, Wang H, Wang Y, Zhang T (2014) Factorial kriging for multiscale modelling. J South Afr Inst Min Metall 114:651–657

    Google Scholar 

  • Merz R, Bloschl G (2005) Flood frequency regionalisation—spatial proximity vs. catchment attributes. J Hydrol 302:283–306

    Article  Google Scholar 

  • Nagle NN (2010) Geostatistical smoothing of areal data: mapping employment density with factorial kriging. Geogr Anal 42(1):99–117. doi:10.1111/j.1538-4632.2009.00784.x

    Article  Google Scholar 

  • Pavlik D, Sohl D, Pluntke T, Mykhnovych A, Bernhofer C (2012) Dynamic downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km. Environ Earth Sci 65:1475–1482

    Article  Google Scholar 

  • Piccolo F, Chirico GB (2005) Sampling errors in rainfall measurements by weather radar. Adv Geosci 2:151–155

    Article  Google Scholar 

  • Roebeling RA, Feijt AJ, Stammes P (2006) Cloud property retrievals for climate monitoring: implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J Geophys Res 111:D20210. doi:10.1029/2005JD006990

    Article  Google Scholar 

  • Samper FJ, Carrera J (1990) Geoestadística: Aplicaciones a la hidrogeología subterránea. CIMNE, Barcelona

    Google Scholar 

  • Sapriza G, Jódar J, Carrera J, Gupta HV (2013) Stochastic simulation of nonstationary rainfall fields, accounting for seasonality and atmospheric circulation pattern evolution. Math Geosci 45(5):621–645. doi:10.1007/s11004-013-9467-0

    Article  Google Scholar 

  • Schröter K, Llort X, Velasco-Forero C, Ostrowski M, Sempere-Torres D (2011) Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions. Atmos Res 100(2–3):237–245

    Article  Google Scholar 

  • Themeßl JM, Gobiet A, Leuprecht A (2010) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544

    Article  Google Scholar 

  • Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gomez-Hernández J (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32:986–1002. doi:10.1016/j.advwatres.2008.10.004

    Article  Google Scholar 

  • Villarini G, Mandapaka PV, Krajewski WF, Moore RJ (2008) Rainfall and sampling uncertainties: a rain gauge perspective. J Geophys Res Atmos 113(D11102):1–12. doi:10.1029/2007JD009214

    Google Scholar 

  • Wackernagel H (2010) Multivariate geostatistics: an introduction with applications. Springer, Berlin. ISBN:9783642079115

  • Warr B, Oliver MA, White K (2002) The application of factorial kriging and Fourier analysis for remotely sensed data simplification and feature accentuation. Geogr Environ Model 6(2):171–187

    Article  Google Scholar 

Download references

Acknowledgments

This research was undertaken as part of the European Union (FP6) funded Integrated Project called WATCH through Contract Number 036946 and also by the project “Hydrological behaviour analysis of groundwater dependent wetlands”, funded by the Geological Survey of Spain (IGME) with Reference Number CANOA-73.3.00.44.00. Local and cloud computing facilities were provided by Hydromodel Host S.L. which is gratefully acknowledged. We would also like to thank the editor Antonio Paez and three anonymous reviewers for their thoughtful comments and constructive suggestions which led to a substantial improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Jódar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jódar, J., Sapriza, G., Herrera, C. et al. Combining point and regular lattice data in geostatistical interpolation. J Geogr Syst 17, 275–296 (2015). https://doi.org/10.1007/s10109-015-0214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-015-0214-6

Keywords

JEL Classification

Navigation