Skip to main content

Advertisement

Log in

Stochastic Simulation of Nonstationary Rainfall Fields, Accounting for Seasonality and Atmospheric Circulation Pattern Evolution

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

A model for generating daily spatial correlated rainfall fields suitable for evaluating the impacts of climate change on water resources is presented. The model, termed Stochastic Rainfall Generating Process, is designed to incorporate two major nonstationarities: changes in the frequencies of different precipitation generating mechanisms (frontal and convective), and spatial nonstationarities caused by interactions of mesoscale atmospheric patterns with topography (orographic effects). These nonstationarities are approximated as discrete sets of the time-stationary Stochastic Rainfall Generating Process, each of which represents the different spatial patterns of rainfall (including its variation with topography) associated with different atmospheric circulation patterns and times of the year (seasons). Each discrete Stochastic Rainfall Generating Process generates daily correlated rainfall fields as the product of two random fields. First, the amount of rainfall is generated by a transformed Gaussian process applying sequential Gaussian simulation. Second, the delimitation of rain and no-rain areas (intermittence process) is defined by a binary random function simulated by sequential indicator simulations. To explore its applicability, the model is tested in the Upper Guadiana Basin in Spain. The result suggests that the model provides accurate reproduction of the major spatiotemporal features of rainfall needed for hydrological modeling and water resource evaluations. The results were significantly improved by incorporating spatial drift related to orographic precipitation into the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Barancourt C, Creutin JD, Rivoirard J (1992) A method for delineating and estimating rainfall fields. Water Resour Res 28(4):1133–1144. doi:10.1029/91WR02896

    Article  Google Scholar 

  • Bardossy A, Plate EJ (1992) Space-time model for daily rainfall using atmospheric circulation patterns. Water Resour Res 28(5):1247–1259. doi:10.1029/91WR02589

    Article  Google Scholar 

  • Barros AP, Lettenmaier DP (1994) Dynamic modeling of orographically induced precipitation. Rev Geophys 32(3):265–284. doi:10.1029/94RG00625

    Article  Google Scholar 

  • Bell TL (1987) A space-time stochastic model of rainfall for satellite remote-sensing studies. J Geophys Res 92(D8):9631–9643. doi:10.1029/JD092iD08p09631

    Article  Google Scholar 

  • Bellone E, Hughes JP, Guttorp P (2000) A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Clim Res 15(1):1–12. doi:10.3354/cr015001

    Article  Google Scholar 

  • Buishand TA, Brandsma T (2001) Multisite simulation of daily precipitation and temperature in the Rhine basin by nearest-neighbor resampling. Water Resour Res 37(11):2761–2776. doi:10.1029/2001WR000291

    Article  Google Scholar 

  • Burton A, Fowler HJ, Kilsby CG, O’Connell PE (2010) A stochastic model for the spatial-temporal simulation of nonhomogeneous rainfall occurrence and amounts. Water Resour Res 46(11):W11501. doi:10.1029/2009WR008884

    Article  Google Scholar 

  • Bader DC, Covey C, Gutowski WJ Jr., Held IM, Kunkel KE, Miller RL, Tokmakian RT, Zhang MH (CCSP) (2008) Climate Models: An Assessment of Strengths and Limitations. A Report by the US Climate Change Science Program and the Subcommittee on Global Change Research Department of Energy. Office of Biological and Environmental Research, Washington. 124 pp

    Google Scholar 

  • Chandler RE, Wheater HS (2002) Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resour Res 38(10):1192. doi:10.1029/2001WR000906

    Article  Google Scholar 

  • Cho H-K, Bowman KP, North GR (2004) A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the tropical rainfall measuring mission. J Appl Meteorol 43(11):1586–1597. doi:10.1175/JAM2165.1

    Article  Google Scholar 

  • Corte-Real J, Xu H, Qian B (1999) A weather generator for obtaining daily precipitation scenarios based on circulation patterns. Clim Res 13(1):61–75. doi:10.3354/cr013061

    Article  Google Scholar 

  • Cowpertwait PS (1995) A generalized spatial-temporal model of rainfall based on a clustered point process. Proc R Soc Lond Ser A, Math Phys Sci 450:163–175

    Article  Google Scholar 

  • Cowpertwait PS (2010) A spatial-temporal point process model with a continuous distribution of storm types. Water Resour Res 46(12):W12507. doi:10.1029/2010WR009728

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Climate 19(18):4605–4630. doi:10.1175/JCLI3884.1

    Article  Google Scholar 

  • De Oliveira V (2004) A simple model for spatial rainfall fields. Stoch Environ Res Risk Assess 18:131–140. doi:10.1007/s00477-003-0146-4

    Article  Google Scholar 

  • Deutsch C, Journel A (1997) GSLIB: geostatistical software library and user’s guide. Oxford University Press, London. 384 pp

    Google Scholar 

  • Doneaud A, Ionescu-Niscov S, Priegnitz DL, Smith PL (1984) The area-time integral as an indicator for convective rain volumes. J Clim Appl Meteorol 23(4):555–561. http://dx.doi.org/10.1175/1520-0450(1984)023<0555:TATIAA>2.0.CO;2

    Article  Google Scholar 

  • Ebtehaj M, Foufoula-Georgiou E (2010) Orographic signature on multiscale statistics of extreme rainfall: a storm-scale study. J Geophys Res 115(D23):D23112. doi:10.1029/2010JD014093

    Article  Google Scholar 

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol Earth Syst Sci 16(9):3391–3404. doi:10.5194/hess-16-3391-2012

    Article  Google Scholar 

  • Eltahir EA, Bras RL (1993) Estimation of the fractional coverage of rainfall in climate models. J Climate 6(4):639–644. http://dx.doi.org/10.1175/1520-0442(1993)006<0639:EOTFCO>2.0.CO;2

    Article  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578. doi:10.1002/joc.1556

    Article  Google Scholar 

  • Fowler HJ, Kilsby CG, O’Connell PE (2000) A stochastic rainfall model for the assessment of regional water resource systems under changed climatic condition. Hydrol Earth Syst Sci 4(2):263–281. doi:10.5194/hess-4-263-2000

    Article  Google Scholar 

  • Fowler H, Kilsby C, O’Connell P, Burton A (2005) A weather-type conditioned multi-site stochastic rainfall model for the generation of scenarios of climatic variability and change. J Hydrol 308(1–4):50–66. doi:10.1016/j.jhydrol.2004.10.021

    Article  Google Scholar 

  • Furrer EM, Katz RW (2008) Improving the simulation of extreme precipitation events by stochastic weather generators. Water Resour Res 44(12):W12439. doi:10.1029/2008WR007316

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D6):D06104. doi:10.1029/2007JD008972

    Article  Google Scholar 

  • Gómez-Hernández J, Cassiraga E (1994) Theory and practice of sequential simulation. Geostatistical simulations. In: Armstrong M, Dowd P (eds) Geostatistical simulations. Kluwer Academic, Dordrecht, pp 111–121

    Chapter  Google Scholar 

  • Gómez-Hernández JJ, Srivastava RM (1990) ISIM3D: an ANSI-C three-dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440. doi:10.1016/0098-3004(90)90010-Q

    Article  Google Scholar 

  • Goodess CM, Palutikof JP (1998) Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int J Climatol 18(10):1051–1083. 3.0.CO; 2-1. doi:10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, London. 496 pp

    Google Scholar 

  • Guillot G (1999) Approximation of Sahelian rainfall fields with meta-Gaussian random functions. Stoch Environ Res Risk Assess 13:100–112. doi:10.1007/s004770050034

    Article  Google Scholar 

  • Gupta VK, Waymire EC (1993) A statistical analysis of mesoscale rainfall as a random cascade. J Appl Meteorol 32(2):251–267. http://dx.doi.org/10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2

    Article  Google Scholar 

  • Hay LE, McCabe GJ, Wolock DM, Ayers MA (1991) Simulation of precipitation by weather type analysis. Water Resour Res 27(4):493–501. doi:10.1029/90WR02650

    Article  Google Scholar 

  • Jenkinson A, Collison F (1977) An initial climatology of gales over the North Sea. Synoptic climatology branch memorandum 62

  • Jodar J, Carrera J, Cruz A (2010) Irrigation enhances precipitation at the mountains downwind. Hydrol. Earth Syst. Sci 14(10):2003–2010. doi:10.5194/hess-14-2003-2010

    Article  Google Scholar 

  • Johnson F, Sharma A (2011) Accounting for interannual variability: a comparison of options for water resources climate change impact assessments. Water Resour Res 47(4). doi:10.1029/2010wr009272

  • Johnson F, Sharma A (2012) A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. Water Resour Res 48(W01504):16. doi:10.1029/2011WR010464

    Google Scholar 

  • Jones PD, Hulme M, Briffa KR (1993) A comparison of Lamb circulation types with an objective classification scheme. Int J Climatol 13(6):655–663. doi:10.1002/joc.3370130606

    Article  Google Scholar 

  • Jothityangkoon C, Sivapalan M, Viney NR (2000) Tests of a space-time model of daily rainfall in southwestern Australia based on nonhomogeneous random cascades. Water Resour Res 36(1):267–284. doi:10.1029/1999WR900253

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kang B, Ramirez JA (2010) A coupled stochastic space-time intermittent random cascade model for rainfall downscaling. Water Resour Res 46(10):W10534. doi:10.1029/2008WR007692

    Article  Google Scholar 

  • Kedem B, Chiu LS (1987) On the lognormality of rain rate. Proc Natl Acad Sci USA 84(4):901–905

    Article  Google Scholar 

  • Kedem B, Pavlopoulos H (1991) On the threshold method for rainfall estimation: choosing the optimal threshold level. J Am Stat Assoc 86(415):626–633

    Article  Google Scholar 

  • Kleiber W, Katz RW, Rajagopalan B (2012) Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes. Water Resour Res 48(1):W01523. doi:10.1029/2011WR011105

    Article  Google Scholar 

  • Kundu PK, Siddani RK (2007) A new class of probability distributions for describing the spatial statistics of area-averaged rainfall. J Geophys Res 112(D18):D18113. doi:10.1029/2006JD008042

    Article  Google Scholar 

  • Kursinski AL, Zeng X (2006) Areal estimation of intensity and frequency of summertime precipitation over a midlatitude region. Geophys Res Lett 33(22):L22401. doi:10.1029/2006GL027393

    Article  Google Scholar 

  • Kyriakidis P, Journel A (1999) Geostatistical space-time models: a review. Math Geol 31:651–684. doi:10.1023/A:1007528426688

    Article  Google Scholar 

  • Kyriakidis P, Miller N, Kim J (2004) A spatial time series framework for simulating daily precipitation at regional scales. J Hydrol 297(1–4):236–255. doi:10.1016/j.jhydrol.2004.04.022

    Article  Google Scholar 

  • Lanza LG (2000) A conditional simulation model of intermittent rain fields. Hydrol Earth Syst Sci 4(1):173–183. doi:10.5194/hess-4-173-2000

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):RG3003. doi:10.1029/2009RG000314

    Article  Google Scholar 

  • Mehrotra R, Sharma A (2007) A semi-parametric model for stochastic generation of multi-site daily rainfall exhibiting low-frequency variability. J Hydrol 335(1–2):180–193. doi:10.1016/j.jhydrol.2006.11.011.

    Article  Google Scholar 

  • Mehrotra R, Sharma A (2009) Evaluating spatio-temporal representations in daily rainfall sequences from three stochastic multi-site weather generation approaches. Adv Water Resour 32(6):948–962. doi:10.1016/j.advwatres.2009.03.005

    Article  Google Scholar 

  • Mehrotra R, Sharma A (2010) Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resour Res 46. doi:10.1029/2009WR008423

  • Mejía JM, Rodríguez-Iturbe I (1974) On the synthesis of random field sampling from the spectrum: an application to the generation of hydrologic spatial processes. Water Resour Res 10(4):705–711. doi:10.1029/WR010i004p00705

    Article  Google Scholar 

  • Northrop P (1998) A clustered spatial-temporal model of rainfall. Proc R Soc A, Math Phys Eng Sci 454(1975):1875–1888

    Article  Google Scholar 

  • Onibon H, Lebel T, Afouda A, Guillot G (2004) Gibbs sampling for conditional spatial disaggregation of rain fields. Water Resour Res 40(8):W08401. doi:10.1029/WR010i004p00705

    Article  Google Scholar 

  • Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J Geophys Res 101(D21):26347–26361. doi:10.1029/96JD01870

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Rodríguez-Iturbe I, Cox DR, Eagleson PS (1986) Spatial modelling of total storm rainfall. Proc R Soc Lond Ser A, Math Phys Sci 403:27–50. 1824

    Article  Google Scholar 

  • Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92(D8):9693–9714. doi:10.1029/JD092iD08p09693

    Article  Google Scholar 

  • Shah S, O’Connell P, Hosking J (1996) Modelling the effects of spatial variability in rainfall on catchment response. 1. Formulation and calibration of a stochastic rainfall field model. J Hydrol 175(1–4):67–88. doi:10.1016/S0022-1694(96)80006-0

    Article  Google Scholar 

  • Sharma A, Mehrotra R (2010) Rainfall generation. Geophys monogr ser, vol 191. AGU, Washington, pp 215–246. doi:10.1029/2010GM000973

    Book  Google Scholar 

  • Sherman M (2011) Spatial statistics and spatio-temporal data: covariance functions and directional properties. Wiley, New York. 294 pp

    Google Scholar 

  • Solari S, Losada MA (2012) A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method. Water Resour Res 48(10):W10541. doi:10.1029/2011WR011475

    Article  Google Scholar 

  • Srikanthan R, McMahon TA (2001) Stochastic generation of annual, monthly and daily climate data: a review. Hydrol Earth Syst Sci 5(4):653–670. doi:10.5194/hess-5-653-2001

    Article  Google Scholar 

  • Stern RD, Coe R (1984) A model fitting analysis of daily rainfall data. J R Stat Soc, Ser A, Stat Soc 147(1):1–34

    Article  Google Scholar 

  • Teo C-K, Grimes DI (2007) Stochastic modelling of rainfall from satellite data. J Hydrol 346(1–2):33–50. doi:10.1016/j.jhydrol.2007.08.014

    Article  Google Scholar 

  • Trenberth K (2011) Changes in precipitation with climate change. Clim Res 47(1–2):123–138. doi:10.3354/cr00953

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217. doi:10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  • Vrac M, Naveau P (2007) Stochastic downscaling of precipitation: from dry events to heavy rainfalls. Water Resour Res 43(7):W07402. doi:10.1029/2006WR005308

    Article  Google Scholar 

  • Waymire E, Gupta VK, Rodríguez-Iturbe I (1984) A spectral theory of rainfall intensity at the meso-beta scale. J Water Resour Res 20(10):1453–1465. doi:10.1029/WR020i010p01453

    Article  Google Scholar 

  • Wheater H, Chandler R, Onof C, Isham V, Bellone E, Yang C, Lekkas D, Lourmas G, Segond ML (2005) Spatial–1temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19:403–416. doi:10.1007/s00477-005-0011-8

    Article  Google Scholar 

  • Wilks DS (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210(1–4):178–191. doi:10.1016/S0022-1694(98)00186-3

    Article  Google Scholar 

  • Yang C, Chandler RE, Isham VS, Wheater HS (2005) Spatial-temporal rainfall simulation using generalized linear models. Water Resour Res 41(11):W11415. doi:10.1029/2004WR003739

    Article  Google Scholar 

  • Yang W, Bárdossy A, Caspary H-J (2010) Downscaling daily precipitation time series using a combined circulation- and regression-based approach. Theor Appl Climatol 102:439–454. doi:10.1007/s00704-010-0272-0

    Article  Google Scholar 

  • Zhang Z, Switzer P (2007) Stochastic space-time regional rainfall modeling adapted to historical rain gauge data. Water Resour Res 43(3):W03441. doi:10.1029/2005WR004654

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken as part of the European Union (FP6) funded Integrated Project WATCH through contract number 036946. The meteorological data were provided by the Spanish state meteorological agency (AEMET). The fourth author received partial support from the Spanish Ministry of Science and Innovation (MEC) and from the Australian Research Council through the Centre of Excellence for Climate System Science (grant number CE110001028). Comments by the editor and referees are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Sapriza Azuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapriza Azuri, G., Jódar, J., Carrera, J. et al. Stochastic Simulation of Nonstationary Rainfall Fields, Accounting for Seasonality and Atmospheric Circulation Pattern Evolution. Math Geosci 45, 621–645 (2013). https://doi.org/10.1007/s11004-013-9467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-013-9467-0

Keywords

Navigation