Skip to main content

Advertisement

Log in

Concave regression: value-constrained estimation and likelihood ratio-based inference

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a likelihood ratio statistic for forming hypothesis tests and confidence intervals for a nonparametrically estimated univariate regression function, based on the shape restriction of concavity (alternatively, convexity). Dealing with the likelihood ratio statistic requires studying an estimator satisfying a null hypothesis, that is, studying a concave least-squares estimator satisfying a further equality constraint. We study this null hypothesis least-squares estimator (NLSE) here, and use it to study our likelihood ratio statistic. The NLSE is the solution to a convex program, and we find a set of inequality and equality constraints that characterize the solution. We also study a corresponding limiting version of the convex program based on observing a Brownian motion with drift. The solution to the limit problem is a stochastic process. We study the optimality conditions for the solution to the limit problem and find that they match those we derived for the solution to the finite sample problem. This allows us to show the limit stochastic process yields the limit distribution of the (finite sample) NLSE. We conjecture that the likelihood ratio statistic is asymptotically pivotal, meaning that it has a limit distribution with no nuisance parameters to be estimated, which makes it a very effective tool for this difficult inference problem. We provide a partial proof of this conjecture, and we also provide simulation evidence strongly supporting this conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that (9) and (10) are potentially different from (1) and (2) in the introduction, but only by a minor indexing modification.

References

  1. Aït-Sahalia, Y., Duarte, J.: Nonparametric option pricing under shape restrictions. J. Econom. 116(1–2), 9–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allon, G., Beenstock, M., Hackman, S., Passy, U., Shapiro, A.: Nonparametric estimation of concave production technologies by entropic methods. J. Appl. Econom. 22(4), 795–816 (2007)

    Article  MathSciNet  Google Scholar 

  3. Balabdaoui, F., Rufibach, K., Wellner, J.A.: Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Stat. 37(3), 1299–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banerjee, M.: Likelihood ratio tests for monotone functions. Ph.D. thesis, University of Washington (2000)

  5. Banerjee, M.: Likelihood based inference for monotone response models. Ann. Stat. 35(3), 931–956 (2007). https://doi.org/10.1214/009053606000001578

    Article  MathSciNet  MATH  Google Scholar 

  6. Banerjee, M., Wellner, J.A.: Likelihood ratio tests for monotone functions. Ann. Stat. 29(6), 1699–1731 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birke, M., Dette, H.: Estimating a convex function in nonparametric regression. Scand. J. Stat. 34(2), 384–404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bronšteĭn, E.M.: Extremal convex functions. Sibirsk. Mat. Ž. 19(1), 10–18, 236 (1978)

    MathSciNet  Google Scholar 

  9. Brunk, H.D.: Estimation of isotonic regression. In: Nonparametric techniques in statistical inference (Proceedings of Symposium, Indiana University, Bloomington, IN, 1969), pp. 177–197. Cambridge University Press, London (1970)

  10. Cai, T.T., Low, M.G., Xia, Y.: Adaptive confidence intervals for regression functions under shape constraints. Ann. Stat. 41(2), 722–750 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dent, W.: A note on least squares fitting of functions constrained to be either nonnegative, nondecreasing or convex. Manag. Sci. 20, 130–132 (1973/74)

  12. Doss, C.R., Wellner, J.A.: Global rates of convergence of the MLEs of log-concave and \(s\)-concave densities. Ann. Stat. 44(3), 954–981 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doss, C.R., Wellner, J.A.: Inference for the mode of a log-concave density. Submitted to the Annals of Statistics (2018). arXiv:1611.10348

  14. Doss, C.R., Wellner, J.A.: Log-concave density estimation with symmetry or modal constraints. Submitted to Annals of Statistics (2018). arXiv:1611.10335v2

  15. Dümbgen, L.: Optimal confidence bands for shape-restricted curves. Bernoulli 9(3), 423–449 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dümbgen, L., Rufibach, K.: Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli 15(1), 40–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78(384), 837–842 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Folland, G.B.: Real Analysis, Pure and Applied Mathematics, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  20. Fraser, D.A.S., Massam, H.: A mixed primal-dual bases algorithm for regression under inequality constraints. application to concave regression. Scand. J. Stat. 16(1), 65–74 (1989)

  21. Groeneboom, P.: Lectures on inverse problems. In: Bernard, P. (ed.) Lectures on Probability Theory, Ecole d’Eté de Probabilités de Saint-Flour XXIV-1994, pp. 67–164. Springer, Berlin (1996)

    Google Scholar 

  22. Groeneboom, P., Jongbloed, G.: Nonparametric confidence intervals for monotone functions. Ann. Stat. 43(5), 2019–2054 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Groeneboom, P., Jongbloed, G., Wellner, J.A.: A canonical process for estimation of convex functions: the “invelope” of integrated brownian motion \(+t^4\). Ann. Stat. 29(6), 1620–1652 (2001)

    Article  MATH  Google Scholar 

  24. Groeneboom, P., Jongbloed, G., Wellner, J.A.: Estimation of a convex function: characterizations and asymptotic theory. Ann. Stat. 29(6), 1653–1698 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hall, P.: Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Stat. 20(2), 675–694 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hannah, L.A., Dunson, D.B.: Multivariate convex regression with adaptive partitioning. J. Mach. Learn. Res. 14, 3261–3294 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Hanson, D.L., Pledger, G.: Consistency in concave regression. Ann. Stat. 4(6), 1038–1050 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hildreth, C.: Point estimates of ordinates of concave functions. J. Am. Stat. Assoc. 49(267), 598–619 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hudson, D.J.: Least-squares fitting of a polynomial constrained to be either non-negative non-decreasing or convex. J. R. Stat. Soc. B 31(1), 113–118 (1969)

    MATH  Google Scholar 

  30. Johansen, S.: The extremal convex functions. Math. Scand. 34, 61–68 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuosmanen, T.: Representation theorem for convex nonparametric least squares. Econom. J. 11(2), 308–325 (2008)

    Article  MATH  Google Scholar 

  32. Lim, E.: Response surface computation via simulation in the presence of convexity. In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) 2010 Winter Simulation Conference, pp. 1246–1254 (2010)

  33. Lim, E., Glynn, P.W.: Consistency of multidimensional convex regression. Oper. Res. 60(1), 196–208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mammen, E.: Nonparametric regression under qualitative smoothness assumptions. Ann. Stat. 19(2), 741–759 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Meyer, M.C.: Inference using shape-restricted regression splines. Ann. Appl. Stat. 2(3), 1013–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meyer, M.C.: Constrained penalized splines. Can. J. Stat. 40(1), 190–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Monti, M.M., Grant, S., Osherson, D.N.: A note on concave utility functions. Mind Soc. 4(1), 85–96 (2005)

    Article  Google Scholar 

  38. Pal, J.K., Woodroofe, M., Meyer, M.: Estimating a Polya frequency function\({}_2\). In: Complex Datasets and Inverse Problems, IMS Lecture Notes Monograph Series, vol. 54, pp. 239–249. Institute of Mathematics Statistics, Beachwood (2007)

  39. Pflug, G., Wets, R.J.B.: Shape-restricted nonparametric regression with overall noisy measurements. J. Nonparametr. Stat. 25(2), 323–338 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  41. Seijo, E., Sen, B.: Nonparametric least squares estimation of a multivariate convex regression function. Ann. Stat. 39(3), 1633–1657 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Silverman, B.: On the estimation of a probability density function by the maximum penalized likelihood method. Ann. Stat. 10(3), 795–810 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sinai, Y.G.: Statistics of shocks in solutions of inviscid burgers equation. Commun. Math. Phys. 148(3), 601–621 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Topaloglu, H., Powell, W.B.: An algorithm for approximating piecewise linear concave functions from sample gradients. Oper. Res. Lett. 31(1), 66–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Toriello, A., Nemhauser, G., Savelsbergh, M.: Decomposing inventory routing problems with approximate value functions. Naval Res. Logist. 57(8), 718–727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, J.C., Meyer, M.C.: Testing the monotonicity or convexity of a function using regression splines. Can. J. Stat. 39(1), 89–107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wasserman, L.: All of Nonparametric Statistics. Springer Texts in Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  48. Wu, C.F.: Some algorithms for concave and isotonic regression. Stud. Manag. Sci. 19, 105–116

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Doss.

Additional information

Supported in part by NSF Grant DMS-1712664.

A Appendix: Technical formulas and other results

A Appendix: Technical formulas and other results

Here is a statement of an integration by parts formulas for functions of bounded variation. See, e.g., page 102 of [19] for the definition of bounded variation.

Lemma 5

([19]) Assume that F and G are of bounded variation on a set [ab] where \(-\infty< a< b < \infty \). If at least one of F and G is continuous, then

$$\begin{aligned} \int _{(a,b]} FdG + \int _{(a,b]} GdF = F(b)G(b) - F(a)G(a). \end{aligned}$$

Theorem 6

([23, Theorem 2.1]) Let \(\sigma , a > 0\). Let \(X(t) = \sigma W(t) - 4a t^3\) where W(t) is standard two-sided Brownian motion starting from 0, and let Y be the integral of X satisfying \(Y(0)=0\). Thus \(Y_{a,\sigma }(t) = \sigma \int _0^t W(s) ds - a t^4\) for \(t \in \mathbb {R}\). Then, with probability 1, there exists a uniquely defined random continuous function \(H_{a,\sigma }\) satisfying the following:

  1. 1.

    The function \(H_{a,\sigma }\) satisfies \(H_{a,\sigma }(t) \le Y(t)\) for all \( t\in \mathbb {R}\).

  2. 2.

    The function \(H_{a,\sigma }\) has a concave second derivative, \(\widehat{r}_{a,\sigma } := H_{a,\sigma }''\).

  3. 3.

    The function \(H_{a,\sigma }\) satisfies \(\int _{\mathbb {R}} ( H_{a,\sigma }(t)-Y_{a,\sigma }(t) ) dH_{a,\sigma }^{(3)}(t)=0\).

Theorem 7

([24, Theorem 6.3]) Suppose that the regression model (9) holds, that \(\epsilon _{n,1},\ldots ,\epsilon _{n,n}\) are i.i.d. with \(E^{\epsilon _{n,1}^2 t} < \infty \) for some \(t > 0\), that \(r_0 \in \mathcal {C}\), that \(r_0''(x_0)<0\), and that \(r_0''\) is continuous in a neighborhood of \(x_0\). Let Assumptions 1 and 2 hold. Let \(a := |r_0''(x_0)|/ 24\) and \(\sigma ^2 := {{\mathrm{Var}}}( \epsilon _{n,i})\). Then

$$\begin{aligned} n^{2/5} \left( \widehat{r}_n\left( x_0 + tn^{-1/5}\right) - r_0(x_0) - r_0'(x_0) t n^{-1/5}\right) \rightarrow _d \widehat{r}_{a,\sigma }(t) \end{aligned}$$

in \(L^p[-K,K]\) for all \(K > 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doss, C.R. Concave regression: value-constrained estimation and likelihood ratio-based inference. Math. Program. 174, 5–39 (2019). https://doi.org/10.1007/s10107-018-1338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1338-5

Mathematics Subject Classification

Navigation