Skip to main content
Log in

On Univariate Convex Regression

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We find the local rate of convergence of the least squares estimator (LSE) of a one dimensional convex regression function when (a) a certain number of derivatives vanish at the point of interest, and (b) the true regression function is locally affine. In each case we derive the limiting distribution of the LSE and its derivative. The pointwise limiting distributions depend on the second and third derivatives at 0 of the “invelope function” of the integral of a two-sided Brownian motion with polynomial drifts. We also investigate the inconsistency of the LSE and the unboundedness of its derivative at the boundary of the domain of the covariate space. An estimator of the argmin of the convex regression function is proposed and its asymptotic distribution is derived. Further, we present some new results on the characterization of the convex LSE that may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balabdaoui, F. (2007). Consistent estimation of a convex density at the origin. Math. Methods Statist. 16, 2, 77–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Balabdaoui, F. and Rufibach, K. (2008). A second marshall inequality in convex estimation. Statistics & Probability Letters 78, 2, 118 –126.

    Article  MathSciNet  MATH  Google Scholar 

  • Balabdaoui, F., Rufibach, K. and Wellner, J.A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann Statist. 37, 3, 1299–1331.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y. and Wellner, J.A. (2016). On convex least squares estimation when the truth is linear. Electron. J. Statist. 10, 1, 171–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Dümbgen, L., Freitag, S. and Jongbloed, G. (2004). Consistency of concave regression with an application to current-status data. Math Methods Statist. 13, 1, 69–81.

    MathSciNet  MATH  Google Scholar 

  • Dümbgen, L., Rufibach, K. and Wellner, J.A. (2007). Marshall’s lemma for convex density estimation. Asymptotics: particles, processes and inverse problems, volume 55 of IMS Lecture Notes Monogr. Ser., pages 101–107. Inst. Math. Statist., Beachwood, OH.

    Google Scholar 

  • Fraser, D.A.S. and Massam, H. (1989). A mixed primal-dual bases algorithm for regression under inequality constraints. Application to concave regression. Scand. J Statist. 16, 1, 65–74.

    MathSciNet  MATH  Google Scholar 

  • Facer Matthew, R. and Müller, H.-G. (2003). Nonparametric estimation of the location of a maximum in a response surface. J Multivariate Anal. 87, 1, 191–217.

    Article  MathSciNet  MATH  Google Scholar 

  • Groeneboom, P., Jongbloed, G. and Wellner, J.A. (2001). A canonical process for estimation of convex functions: the invelope of integrated Brownian motion + t 4. Ann. Statist. 29, 6, 1620–1652.

    Article  MathSciNet  MATH  Google Scholar 

  • Groeneboom, P., Jongbloed, G. and Wellner, J.A. (2001). Estimation of a convex function: characterizations and asymptotic theory. Ann. Statist. 29, 6, 1653–1698.

    Article  MathSciNet  MATH  Google Scholar 

  • Hildreth, C. (1954). Point estimates of ordinates of concave functions. J. Amer. Statist. Assoc. 49, 598–619.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson, D.L. and Pledger, G. (1976). Consistency in concave regression. Ann Statist. 4, 6, 1038–1050.

    Article  MathSciNet  MATH  Google Scholar 

  • Mammen, E. (1991). Nonparametric regression under qualitative smoothness assumptions. Ann. Statist. 19, 2, 741–759.

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, M. and Woodroofe, M. (2000). On the degrees of freedom in shape-restricted regression. Ann. Statist. 28, 4, 1083–1104.

    Article  MathSciNet  MATH  Google Scholar 

  • Robertson, T., Wright, F.T. and Dykstra, R.L. (1988) Order restricted statistical inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Ltd. Chichester.

  • Seijo, E. and Sen, B. (2011). Nonparametric least squares estimation of a multivariate convex regression function. Ann Statist. 39, 3, 1633–1657.

    Article  MathSciNet  MATH  Google Scholar 

  • van der Vaart, A.W. and Wellner, J.A. (1996). Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York. With applications to statistics.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Promit Ghosal.

Additional information

Supported by NSF grant DMS-1150435

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosal, P., Sen, B. On Univariate Convex Regression. Sankhya A 79, 215–253 (2017). https://doi.org/10.1007/s13171-017-0104-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-017-0104-8

Keywords and phrases.

AMS (2000) subject classification.

Navigation