Skip to main content
Log in

Modulation of exercise-induced muscular damage and hyperalgesia by different 630 nm doses of light-emitting diode therapy (LEDT) in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We compared the acute effects of different doses of 630 nm light-emitting diode therapy (LEDT) on skeletal muscle inflammation and hyperalgesia in rats submitted to exercise-induced muscle damage (EIMD). Wistar rats were divided into five experimental groups (n = 5–8/group): sedentary control (CON); exercise + passive recovery (PR); and exercise + LEDT (1.2 J/cm2, 1.8 J; 4.2 J/cm2, 6.3 J; 10.0 J/cm2, 15 J). After 100 min of swimming, the rats in the LEDT groups were exposed to phototherapy on the triceps surae muscle. For mechanical hyperalgesia evaluation, paw withdrawal threshold was assessed before and 24 h after swimming. Immediately after hyperalgesia tests, blood samples were collected to analyze creatine kinase (CK) activity and the soleus muscle was removed for histological and tumor necrosis factor (TNF)-α immunohistological analyses. In all LEDT groups, plasma CK activity was reduced to levels similar to those measured in the CON group. Paw withdrawal threshold decreased in the PR group (− 11.9 ± 1.9 g) when compared to the CON group (2.2 ± 1.5 g; p < 0.01) and it was attenuated in the group LEDT 4.2 J/cm2 (− 3.3 ± 2.4 g, p < 0.05). Less leukocyte infiltration and edema and fewer necrotic areas were found in histological sections of soleus muscle in LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups compared to the PR group. Also, LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups showed less immunostaining for TNF-α in macrophages or areas with necrosis of muscle fibers compared to the PR group. LEDT (4.2 J/cm2, 6.3 J)-reduced muscle inflammation and nociception in animals submitted to EIMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ely MR, Romero SA, Sieck DC et al (2016) A single dose of histamine-receptor antagonists prior to downhill running alters markers of muscle damage and delayed onset muscle soreness. J Appl Physiol. https://doi.org/10.1152/japplphysiol.00518.2016

  2. Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23. https://doi.org/10.1113/jphysiol.2007.139477

    Article  CAS  PubMed  Google Scholar 

  3. Morgado JP, Monteiro CP, Teles J et al (2016) Immune cell changes in response to a swimming training session during a 24-h recovery period. Appl Physiol Nutr Metab 41:476–483. https://doi.org/10.1139/apnm-2015-0488

    Article  PubMed  Google Scholar 

  4. Silveira Coswig V, Hideyoshi Fukuda D, de Paula Ramos S, Boscolo Del Vecchio F (2016) Biochemical differences between official and simulated mixed martial arts (MMA) matches. Asian J Sports Med In press. https://doi.org/10.5812/asjsm.30950

  5. Abdelmagid SM, Barr AE, Rico M et al (2012) Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation. PLoS One 7:e38359. https://doi.org/10.1371/journal.pone.0038359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ascensão A, Rebelo A, Oliveira E et al (2008) Biochemical impact of a soccer match - analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem 41:841–851. https://doi.org/10.1016/j.clinbiochem.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  7. Chatzinikolaou A, Fatouros IG, Gourgoulis V et al (2010) Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res 24:1389–1398. https://doi.org/10.1519/JSC.0b013e3181d1d318

    Article  PubMed  Google Scholar 

  8. Paulsen G, Crameri R, Benestad HB et al (2010) Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc 42:75–85. https://doi.org/10.1249/MSS.0b013e3181ac7adb

    Article  PubMed  Google Scholar 

  9. Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train 48:57–67. https://doi.org/10.4085/1062-6050-48.1.12

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fritsch CG, Dornelles MP, Severo-Silveira L et al (2016) Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: randomized, double-blind, placebo-controlled trial. Lasers Med Sci 31:1935–1942. https://doi.org/10.1007/s10103-016-2072-y

    Article  PubMed  Google Scholar 

  11. de Paiva PRV, Tomazoni SS, Johnson DS et al (2016) Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers Med Sci. https://doi.org/10.1007/s10103-016-2071-z

  12. Vanin AA, Verhagen E, Barboza SD et al (2017) Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers Med Sci. https://doi.org/10.1007/s10103-017-2368-6

  13. Camargo MZ, Siqueira CPCM, Preti MCP et al (2012) Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 27:1051–1058. https://doi.org/10.1007/s10103-011-1039-2

    Article  PubMed  Google Scholar 

  14. da Costa Santos VB, de Paula Ramos S, Milanez VF et al (2014) LED therapy or cryotherapy between exercise intervals in Wistar rats: anti-inflammatory and ergogenic effects. Lasers Med Sci 29:599–605. https://doi.org/10.1007/s10103-013-1371-9

    Article  PubMed  Google Scholar 

  15. Liu X-G, Zhou Y-J, Liu TC-Y, Yuan J-Q (2009) Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg 27:863–869. https://doi.org/10.1089/pho.2008.2443

    Article  CAS  PubMed  Google Scholar 

  16. Santos LA, Marcos RL, Tomazoni SS et al (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci 29:1617–1626. https://doi.org/10.1007/s10103-014-1560-1

    Article  PubMed  Google Scholar 

  17. Sussai DA, Carvalho PTC, Dourado DM et al (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25:115–120. https://doi.org/10.1007/s10103-009-0697-9

    Article  PubMed  Google Scholar 

  18. Nampo FK, Cavalheri V, Ramos S de P, Camargo EA (2016) Effect of low-level phototherapy on delayed onset muscle soreness: a systematic review and meta-analysis. Lasers Med Sci 31:165–177. https://doi.org/10.1007/s10103-015-1832-4

    Article  PubMed  Google Scholar 

  19. Antonialli FC, De Marchi T, Tomazoni SS et al (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29:1967–1976. https://doi.org/10.1007/s10103-014-1611-7

    Article  PubMed  Google Scholar 

  20. Laakso E-L, Cabot PJ (2005) Nociceptive scores and endorphin-containing cells reduced by low-level laser therapy (LLLT) in inflamed paws of Wistar rat. Photomed Laser Surg 23:32–35. https://doi.org/10.1089/pho.2005.23.32

    Article  PubMed  Google Scholar 

  21. Pereira FC, Parisi JR, Maglioni CB et al (2017) Antinociceptive effects of low-level laser therapy at 3 and 8 j/cm 2 in a rat model of postoperative pain: possible role of endogenous opioids: antinociceptive effects of low-level laser therapy. Lasers Surg Med 49:844–851. https://doi.org/10.1002/lsm.22696

    Article  PubMed  Google Scholar 

  22. Martins DF, Turnes BL, Cidral-Filho FJ et al (2016) Light-emitting diode therapy reduces persistent inflammatory pain: role of interleukin 10 and antioxidant enzymes. Neuroscience 324:485–495. https://doi.org/10.1016/j.neuroscience.2016.03.035

    Article  CAS  PubMed  Google Scholar 

  23. Belém MO, de Andrade GMM, Carlos TM et al (2016) Light-emitting diodes at 940nm attenuate colitis-induced inflammatory process in mice. J Photochem Photobiol B 162:367–373. https://doi.org/10.1016/j.jphotobiol.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  24. Pigatto GR, Coelho IS, Aquino RS et al (2016) Light-emitting diode phototherapy reduces nocifensive behavior induced by thermal and chemical noxious stimuli in mice: evidence for the involvement of capsaicin-sensitive central afferent fibers. Mol Neurobiol. https://doi.org/10.1007/s12035-016-9887-1

  25. Baroni BM, Rodrigues R, Freire BB et al (2015) Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 115:639–647. https://doi.org/10.1007/s00421-014-3055-y

    Article  CAS  PubMed  Google Scholar 

  26. Cidral-Filho FJ, Martins DF, Moré AOO et al (2013) Light-emitting diode therapy induces analgesia and decreases spinal cord and sciatic nerve tumour necrosis factor-α levels after sciatic nerve crush in mice: light-emitting diode therapy analgesic effect. Eur J Pain 17:1193–1204. https://doi.org/10.1002/j.1532-2149.2012.00280.x

    Article  CAS  PubMed  Google Scholar 

  27. Cidral-Filho FJ, Mazzardo-Martins L, Martins DF, Santos ARS (2014) Light-emitting diode therapy induces analgesia in a mouse model of postoperative pain through activation of peripheral opioid receptors and the l-arginine/nitric oxide pathway. Lasers Med Sci 29:695–702. https://doi.org/10.1007/s10103-013-1385-3

    Article  PubMed  Google Scholar 

  28. de Almeida P, Lopes-Martins RAB, De Marchi T et al (2012) Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers Med Sci 27:453–458. https://doi.org/10.1007/s10103-011-0957-3

    Article  PubMed  Google Scholar 

  29. Vanin AA, Miranda EF, Machado CSM et al (2016) What is the best moment to apply phototherapy when associated to a strength training program? A randomized, double-blinded, placebo-controlled trial: phototherapy in association to strength training. Lasers Med Sci. https://doi.org/10.1007/s10103-016-2015-7

  30. Beck W, Gobatto CA (2013) Effects of maximum intensity aerobic swimming exercise until exhaustion at different times of day on the hematological parameters in rats. Acta Physiol Hung 100:427–434. https://doi.org/10.1556/APhysiol.100.2013.013

    Article  CAS  PubMed  Google Scholar 

  31. Balci SS, Pepe H (2012) Effects of gender, endurance training and acute exhaustive exercise on oxidative stress in the heart and skeletal muscle of the rat. Chin J Physiol. https://doi.org/10.4077/CJP.2012.BAA021

  32. Isanejad A, Saraf ZH, Mahdavi M et al (2015) The effect of endurance training and downhill running on the expression of IL-1β, IL-6, and TNF-α and HSP72 in rat skeletal muscle. Cytokine 73:302–308. https://doi.org/10.1016/j.cyto.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  33. Lamou B, Taiwe GS, Hamadou A et al (2016) Antioxidant and antifatigue properties of the aqueous extract of Moringa oleifera in rats subjected to forced swimming endurance test. Oxidative Med Cell Longev 2016:1–9. https://doi.org/10.1155/2016/3517824

    Article  Google Scholar 

  34. de Almeida P, Lopes-Martins RÁB, Tomazoni SS et al (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87:1159–1163. https://doi.org/10.1111/j.1751-1097.2011.00968.x

    Article  CAS  PubMed  Google Scholar 

  35. Leal Junior ECP, Lopes-Martins RÁB, de Almeida P et al (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108:1083–1088. https://doi.org/10.1007/s00421-009-1321-1

    Article  PubMed  Google Scholar 

  36. Lopes-Martins RÁB, Marcos RL, Leonardo PS et al (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288. https://doi.org/10.1152/japplphysiol.01318.2005

    Article  PubMed  Google Scholar 

  37. Baumert P, Lake MJ, Stewart CE et al (2016) Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 116:1595–1625. https://doi.org/10.1007/s00421-016-3411-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Douglas J, Pearson S, Ross A, McGuigan M (2016) Eccentric exercise: physiological characteristics and acute responses. Sports Med. https://doi.org/10.1007/s40279-016-0624-8

  39. de Oliveira HA, Antonio EL, Silva FA et al (2018) Protective effects of photobiomodulation against resistance exercise-induced muscle damage and inflammation in rats. J Sports Sci 36:2349–2357. https://doi.org/10.1080/02640414.2018.1457419

    Article  PubMed  Google Scholar 

  40. Mantineo M, Pinheiro JP, Morgado AM (2014) Low-level laser therapy on skeletal muscle inflammation: evaluation of irradiation parameters. J Biomed Opt 19:98002. https://doi.org/10.1117/1.JBO.19.9.098002

    Article  CAS  PubMed  Google Scholar 

  41. Assis L, Moretti AIS, Abrahão TB et al (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 44:726–735. https://doi.org/10.1002/lsm.22077

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tomazoni SS, Frigo L, Dos Reis Ferreira TC et al (2017) Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 2: biochemical aspects. Lasers Med Sci. https://doi.org/10.1007/s10103-017-2299-2

  43. McCarthy DA, Dale MM (1988) The leucocytosis of exercise. A review and model. Sports Med Auckl NZ 6:333–363

    Article  CAS  Google Scholar 

  44. Kakanis MW, Peake J, Brenu EW et al (2010) The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev 16:119–137

    CAS  PubMed  Google Scholar 

  45. Banfi G, Roi GS, Dolci A, Susta D (2004) Behaviour of haematological parameters in athletes performing marathons and ultramarathons in altitude (“skyrunners”). Clin Lab Haematol 26:373–377. https://doi.org/10.1111/j.1365-2257.2004.00642.x

    Article  CAS  PubMed  Google Scholar 

  46. Lippi G, Banfi G, Montagnana M et al (2010) Acute variation of leucocytes counts following a half-marathon run. Int J Lab Hematol 32:117–121. https://doi.org/10.1111/j.1751-553X.2008.01133.x

    Article  CAS  PubMed  Google Scholar 

  47. Mizumura K, Taguchi T (2016) Delayed onset muscle soreness: involvement of neurotrophic factors. J Physiol Sci 66:43–52. https://doi.org/10.1007/s12576-015-0397-0

    Article  CAS  PubMed  Google Scholar 

  48. Murase S, Terazawa E, Hirate K et al (2013) Upregulated glial cell line-derived neurotrophic factor through cyclooxygenase-2 activation in the muscle is required for mechanical hyperalgesia after exercise in rats. J Physiol 591:3035–3048. https://doi.org/10.1113/jphysiol.2012.249235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murase S, Terazawa E, Queme F et al (2010) Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed-onset muscle soreness). J Neurosci 30:3752–3761. https://doi.org/10.1523/JNEUROSCI.3803-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yan W, Chow R, Armati PJ (2011) Inhibitory effects of visible 650-nm and infrared 808-nm laser irradiation on somatosensory and compound muscle action potentials in rat sciatic nerve: implications for laser-induced analgesia. J Peripher Nerv Syst JPNS 16:130–135. https://doi.org/10.1111/j.1529-8027.2011.00337.x

    Article  PubMed  Google Scholar 

  51. Lim W, Lee S, Kim I et al (2007) The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39:614–621. https://doi.org/10.1002/lsm.20533

    Article  PubMed  Google Scholar 

  52. Rennó ACM, Toma RL, Feitosa SM et al (2011) Comparative effects of low-intensity pulsed ultrasound and low-level laser therapy on injured skeletal muscle. Photomed Laser Surg 29:5–10. https://doi.org/10.1089/pho.2009.2715

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Laboratorio de Óptica e Optoeletronica do Departamento de Física da Universidade Estadual de Londrina” for technical support; the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES); “Conselho Nacional de Pesquisa e Desenvolvimento Científico” (CNPq); and “Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná”. ABSV was a recipient of scholarship from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enilton A. Camargo.

Ethics declarations

The experimental procedures were carried out according to the standards of the Brazilian Society of Laboratory Animal Care and were approved by the Ethics Committee on the Use of Animals under protocol number 124/2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasconcelos, A.B., Nampo, F.K., Molina, J.C. et al. Modulation of exercise-induced muscular damage and hyperalgesia by different 630 nm doses of light-emitting diode therapy (LEDT) in rats. Lasers Med Sci 34, 749–758 (2019). https://doi.org/10.1007/s10103-018-2655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2655-x

Keywords

Navigation