Skip to main content
Log in

Indocyanine green-mediated photobiomodulation on human osteoblast cells

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photobiomodulation (PBM) and photodynamic therapy (PDT) share similar mechanisms but have opposite aims. Increased levels of reactive oxygen species (ROS) in the target tissue in response to light combined photosensitizer (PS) application may lead to cell proliferation or oxidative damage depending on the ROS amount. The purpose of the present study is to investigate the effect of indocyanine green (ICG)-mediated PBM on osteoblast cells by measuring cell viability, proliferation, alkaline phosphatase (ALP) activity, mineralization, and gene expressions of three phenotypic osteoblast markers. A diode laser irradiating at 809 nm (10 W output power, 50 mW/cm2 power density) was used at 0.5, 1, and 2 J/cm2 energy densities (10, 20, and 40 s respectively) was applied following ICG incubation. No inhibitory effect was observed in cell viability and proliferation according to the (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Alamar Blue assays. ICG-mediated PBM did not alter cell viability but increased ALP activity and enhanced mineralization of existing osteoblasts. These results were also confirmed by real-time polymerase chain reaction (RT-PCR) analysis of osteoblastic markers. PS can be combined to PBM not only to damage the malignant cells as aimed in PDT studies, but also to promote cellular activity. The findings of this in vitro study may contribute to in vivo studies and ICG-mediated PBM can have promising outcomes in bone healing and regeneration therapies in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim W-S, Calderhead RG (2011) Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther 20:205–215. https://doi.org/10.5978/islsm.20.205

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kushibiki T, Tajiri T, Ninomiya Y, Awazu K (2010) Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B 98:211–215. https://doi.org/10.1016/j.jphotobiol.2010.01.008

    Article  PubMed  CAS  Google Scholar 

  3. Liebert MA (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714. https://doi.org/10.1089/PHO.2006.1076

    Article  CAS  Google Scholar 

  4. Hu W-P, Wang J-J, Yu C-L et al (2017) Helium–Neon Laser Irradiation Stimulates Cell Proliferation through Photostimulatory Effects in Mitochondria. J Invest Dermatol 127:2048–2057. https://doi.org/10.1038/sj.jid.5700826

    Article  CAS  Google Scholar 

  5. AlGhamdi KM, Kumar A, N a M (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. https://doi.org/10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  6. Chen AC-H, Huang Y-Y, Arany PR, Hamblin MR (2009) <title>Role of reactive oxygen species in low level light therapy</title>. 716502-716502–11. doi: https://doi.org/10.1117/12.814890

  7. Droge W, Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  PubMed  CAS  Google Scholar 

  8. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255. https://doi.org/10.1038/sj.bjp.0705776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233–234:351–371. https://doi.org/10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  10. FOX IJ, WOOD EH (1960) Indocyanine green: physical and physiologic properties. Proc Staff Meet Mayo Clin 35:732–744

    PubMed  CAS  Google Scholar 

  11. Desmettre T, Devoisselle JM, Mordon S (2000) MAJOR REVIEW Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. 45

  12. Yusa K, Yamamoto O, Iino M et al (2016) Eluted zinc ions stimulate osteoblast differentiation and mineralization in human dental pulp stem cells for bone tissue engineering. Arch Oral Biol 71:162–169. https://doi.org/10.1016/j.archoralbio.2016.07.010

    Article  PubMed  CAS  Google Scholar 

  13. Coombe AR, Ho CT, Darendeliler MA et al (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4:3–14

    Article  PubMed  CAS  Google Scholar 

  14. Ebrahimi T, Moslemi N, Rokn A et al (2012) The influence of low-intensity laser therapy on bone healing. J Dent (Tehran) 9:238–248

    CAS  Google Scholar 

  15. Arisu HD, Türköz E, Bala O (2006) Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180. https://doi.org/10.1007/s10103-006-0398-6

    Article  PubMed  Google Scholar 

  16. Bolukbasi Ates G, Ak Can A, Gulsoy M (2017) Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 32:591–599. https://doi.org/10.1007/s10103-017-2153-6

    Article  PubMed  Google Scholar 

  17. Cavalcanti MFXB, Maria DA, De Isla N, et al (2015) Evaluation of the proliferative effects induced by low-level laser therapy in bone marrow stem cell culture. Photomed Laser Surg doi: https://doi.org/10.1089/pho.2014.3864

  18. Borzabadi-Farahani A (2016) Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B Biol 162:577–582. https://doi.org/10.1016/j.jphotobiol.2016.07.022

    Article  CAS  Google Scholar 

  19. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  20. Pettit RK, Weber CA, Kean MJ et al (2005) Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother 49:2612–2617. https://doi.org/10.1128/AAC.49.7.2612-2617.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rampersad SN (2012) Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Switzerland) 12:12347–12360. https://doi.org/10.3390/s120912347

    Article  CAS  Google Scholar 

  22. Zachari MA, Chondrou PS, Pouliliou SE et al (2014) Evaluation of the alamarblue assay for adherent cell irradiation experiments. Dose-Response 12:246–258. https://doi.org/10.2203/dose-response.13-024.Koukourakis

    Article  PubMed  Google Scholar 

  23. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84. https://doi.org/10.1016/j.ab.2004.02.002

    Article  PubMed  CAS  Google Scholar 

  24. Ateş GB, Ak A, Garipcan B, Gülsoy M (2017) Methylene blue mediated photobiomodulation on human osteoblast cells. Lasers Med Sci 32:1847–1855. https://doi.org/10.1007/s10103-017-2286-7

    Article  PubMed  Google Scholar 

  25. Arany PR (2011) Laser photobiomodulation: models and mechanisms CU R R ENT

  26. Schwartz-Filho HO, Reimer AC, Marcantonio C et al (2011) Effects of low-level laser therapy (685 nm) at different doses in osteogenic cell cultures. Lasers Med Sci 26:539–543. https://doi.org/10.1007/s10103-011-0902-5

    Article  PubMed  Google Scholar 

  27. Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  28. Neupane J, Ghimire S, Shakya S et al (2010) Effect of light emitting diodes in the photodynamic therapy of rheumatoid arthritis. Photodiagn Photodyn Ther 7:44–49. https://doi.org/10.1016/j.pdpdt.2009.12.006

    Article  Google Scholar 

  29. Montoro LA, Turrioni APS, Basso FG et al (2014) Infrared LED irradiation photobiomodulation of oxidative stress in human dental pulp cells. Int Endod J 47:747–755. https://doi.org/10.1111/iej.12211

    Article  PubMed  CAS  Google Scholar 

  30. Rezai KA, Farrokh-Siar L, Ernest JT, van Seventer GA (2004) Indocyanine green induces apoptosis in human retinal pigment epithelial cells. Am J Ophthalmol 137:931–933. https://doi.org/10.1016/j.ajo.2003.11.016

    Article  PubMed  CAS  Google Scholar 

  31. Yamada T, Yoshikawa M, Kanda S et al (2002) In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20:146–154. https://doi.org/10.1634/stemcells.20-2-146

    Article  PubMed  Google Scholar 

  32. Abels C, Fickweiler S, Weiderer P et al (2000) Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch Dermatol Res 292:404–411. https://doi.org/10.1007/s004030000147

    Article  PubMed  CAS  Google Scholar 

  33. Bäumler W, Abels C, Karrer S et al (1999) Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light. Br J Cancer 80:360–363. https://doi.org/10.1038/sj.bjc.6690363

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jawad MM, Husein A, Azlina A et al (2013) Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt 18:128001. https://doi.org/10.1117/1.JBO.18.12.128001

    Article  PubMed  Google Scholar 

  35. Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A (2014) Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci 5:163–170

    PubMed  PubMed Central  Google Scholar 

  36. Pagin MT, de Oliveira FA, Oliveira RC et al (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29:55–59. https://doi.org/10.1007/s10103-012-1238-5

    Article  PubMed  Google Scholar 

  37. Zancanela DC, Primo FL, Rosa AL et al (2011) The effect of photosensitizer drugs and light stimulation on osteoblast growth. Photomed Laser Surg 29:699–705. https://doi.org/10.1089/pho.2010.2929

    Article  PubMed  CAS  Google Scholar 

  38. Medina-Huertas R, Manzano-Moreno FJ, De Luna-Bertos E et al (2014) The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med Sci. https://doi.org/10.1007/s10103-014-1557-9

  39. Petri AD, Teixeira LN, Crippa GE et al (2010) Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J 21:491–498

    Article  PubMed  Google Scholar 

  40. Stein E, Koehn J, Sutter W et al (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120:112–117. https://doi.org/10.1007/s00508-008-0932-6

    Article  PubMed  CAS  Google Scholar 

  41. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509. https://doi.org/10.1016/j.biomaterials.2004.09.033

    Article  PubMed  CAS  Google Scholar 

  42. Rodan GA, Noda M (1991) Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr 1:85–98

    PubMed  CAS  Google Scholar 

  43. Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448. https://doi.org/10.1097/BCO.0b013e3282630851

    Article  Google Scholar 

  44. Setzer B, Bächle M, Metzger MC, Kohal RJ (2009) The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials 30:979–990. https://doi.org/10.1016/j.biomaterials.2008.10.054

    Article  PubMed  CAS  Google Scholar 

  45. Huang W, Yang S, Shao J, Li Y-P (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Silva JCE, Lacava ZGM, Kuckelhaus S et al (2004) Evaluation of the use of low level laser and photosensitizer drugs in healing. Lasers Surg Med 34:451–457. https://doi.org/10.1002/lsm.20062

    Article  PubMed  Google Scholar 

  47. Jayasree RS, Gupta AK, Rathinam K et al (2001) The influence of photodynamic therapy on the wound healing process in rats. J Biomater Appl 15:176–186. https://doi.org/10.1106/9335-Q0NC-5XCQ-KBYK

    Article  PubMed  CAS  Google Scholar 

  48. Zhang X, Jiang F, Zhang ZG et al (2005) Low-dose photodynamic therapy increases endothelial cell proliferation and VEGF expression in nude mice brain. Lasers Med Sci 20:74–79. https://doi.org/10.1007/s10103-005-0348-8

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grant (113Z059) of the Scientific and Research Council of Turkey (TUBITAK). The cell culture experiments were performed at Boğaziçi University Biomedical Engineering Institute Biomaterials laboratory, which was supported by Boğaziçi University Research Fund with the grant number 6701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Bölükbaşı Ateş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateş, G.B., Ak, A., Garipcan, B. et al. Indocyanine green-mediated photobiomodulation on human osteoblast cells. Lasers Med Sci 33, 1591–1599 (2018). https://doi.org/10.1007/s10103-018-2530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2530-9

Keywords

Navigation