Skip to main content

Advertisement

Log in

Effects of PBM in different energy densities and irradiance on maintaining cell viability and proliferation of pulp fibroblasts from human primary teeth

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to compare the effects of photobiomodulation (PBM) in different energy densities and irradiances on maintaining cell viability, and proliferation of pulp fibroblasts from human primary teeth (HPF) were cultured in DMEM and used between the fourth and eighth passages. Then, HPF were irradiated with the following different energy densities: 1.25 J/cm2 (a), 2.50 J/cm2 (b), 3.75 J/cm2 (c), 5.00 J/cm2 (d), and 6.25 J/cm2 (e); but varying either the time of irradiation (groups 1a–1e) or the output power (groups 2a–2e). Positive (groups 1f and 2f) and negative controls (groups 1g and 2g), respectively, comprised non-irradiated cells grown in regular nutritional conditions (10% fetal bovine serum [FBS]) and under nutritional deficit (1% FBS). Cell viability and proliferation were respectively assessed through MTT and crystal violet (CV) assays at 24, 48, and 72 h after irradiation. Statistical analysis was performed by two-way ANOVA, followed by Tukey test (P < 0.05). The negative controls showed significantly lower viability in relation to most of the corresponding subgroups, both for MTT and CV assays. For both assays, the intragroup comparison showed that the periods of 24 h exhibited lower viability than the periods of 48 and 72 h for most of the subgroups, except the negative controls with lower viability. The different irradiation protocols (equal energy densities applied with different irradiances) showed no statistically significant differences on cell viability and proliferation at the evaluated periods. The proposed PBM in different energy densities and irradiance did not affect the viability and proliferation of pulp fibroblasts from human primary teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oliveira TM, Moretti AB, Sakai VT, Neto NL, Santos CF, Machado MAAM, Abdo RCC (2013) Clinical, radiographic and histologic analysis of the effects of pulp capping materials used in pulpotomies of human primary teeth. Eur Arch Paediatr Dent 14:65–71. doi:10.1007/s40368-013-0015-x

    Article  CAS  PubMed  Google Scholar 

  2. Marques NCT, Neto NL, Rodini CO, Fernandes AP, Sakai VT, Machado MAAM, Oliveira TM (2015) Low-level laser therapy as an alternative for pulpotomy in human primary teeth. Lasers Med Sci 30:1815–1822. doi:10.1007/s10103-014-1656-7

    Article  PubMed  Google Scholar 

  3. Karu T (1989) Photobiology of low-power laser effects. Health Phys 56:691–704

    Article  CAS  PubMed  Google Scholar 

  4. Basso FG, Pansani TN, Turrioni APS, Bagnato VS, Hebling J, Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent 2012:719452. doi:10.1155/2012/719452

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wagner VP, Meurer L, Martins MAT, Danilevicz CK, Magnusson AS, Marques MM, Martins MD (2013) Influence of different energy densities of laser phototherapy on oral wound healing. J Biomed Opt 18:128002. doi:10.1117/1.JBO.18.12.128002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ginani F, Soares DM, Barboza CAG (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30:2189–2194. doi:10.1007/s10103-015-1730-9

    Article  PubMed  Google Scholar 

  7. Pandeshwar P, Roa MD, Das R, Shastry SP, Kaul R, Srinivasreddy MB (2015) Photobiomodulation in oral medicine: a review. J Investig Clin Dent 7:114–126. doi:10.1111/jicd.12148

    Article  PubMed  Google Scholar 

  8. Chmilewsky F, Jeanneau C, Laurent P, About I (2014) Pulp fibroblasts synthesize functional complement proteins involved in initiating dentin–pulp regeneration. Am J Pathol 184:1991–2000. doi:10.1016/j.ajpath.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Morandini ACF, Chaves Souza PP, Ramos-Junior ES, Brozoski DT, Sipert CR, Souza Costa CA, Santos CF (2013) Toll-like receptor 2 knockdown modulates interleukin (IL)-6 and IL-8 but not stromal derived factor-1 (SDF-1/CXCL12) in human periodontal ligament and gingival fibroblasts. J Periodontol 84:535–544. doi:10.1902/jop.2012.120177

    Article  CAS  PubMed  Google Scholar 

  10. Sipert CR, Morandini ACF, Modena KCS, Dionisio TJ, Machado MAAM, Oliveira SHP, Santos CF (2013) CCL3 and CXCL12 production in vitro by dental pulp fibroblasts from permanent and deciduous teeth stimulated by Porphyromonas gingivalis LPS. J Appl Oral Sci 21:99–105. doi:10.1590/1678-7757201300004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Damante CA, De Micheli G, Miyagi SPH, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885. doi:10.1007/s10103-008-0582-y

    Article  PubMed  Google Scholar 

  12. Tagliani MM, Oliveira CF, Lins EMM, Kurachi C, Hebling J, Bagnato VS, Souza Costa CA (2010) Nutritional stress enhances cell viability of odontoblast-like cells subjected to low level laser irradiation. Laser Phys 7:247–251. doi:10.1002/lapl.200910137

    Article  CAS  Google Scholar 

  13. Oliveira CF, Basso FG, Lins EC, Kurachi C, Hebling J, Bagnato VS, Souza Costa CA (2011) In vitro effect of low-level laser on odontoblast-like cells. Laser Phys 8:155–163. doi:10.1002/lapl.201010101

    Article  CAS  Google Scholar 

  14. Volpato LER, Oliveira RC, Espinosa MM, Bagnato VS, Machado MAAM (2011) Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode. J Biomed Opt 16:075004. doi:10.1117/1.3602850

    Article  PubMed  Google Scholar 

  15. Oliveira FA, Matos AA, Santesso MR, Tokuhara CK, Leite AL, Bagnato VS, Oliveira RC (2016) Low intensity lasers differently induce primary human osteoblast proliferation and differentiation. J Photochem Photobiol B 163:14–21. doi:10.1016/j.jphotobiol.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  16. Eduardo FP, Bueno DF, Freitas PM, Marques MM, Passos- Bueno MR, Eduardo CDP, Zatz M (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 40:433–438. doi:10.1002/lsm.20646

    Article  Google Scholar 

  17. Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, Carvalho PTC, Silva JA (2015) Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers Med Sci 30:217–223. doi:10.1007/s10103-014-1646-9

    Article  PubMed  Google Scholar 

  18. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. doi:10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  19. Almeida- Lopes L, Rigau J, Amaro Zângaro R, Guidugli- Neto J, Marques Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184. doi:10.1002/lsm.1107

    Article  CAS  PubMed  Google Scholar 

  20. Pereira AN, Eduardo CP, Matson E, Marques MM (2002) Effect of low- power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267. doi:10.1002/lsm.10107

    Article  PubMed  Google Scholar 

  21. Kreisler M, Christoffers AB, Al- Haj H, Willershausen B, d'Hoedt B (2002) Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369. doi:10.1002/lsm.10060

    Article  PubMed  Google Scholar 

  22. Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I (2005) Effect of low-level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol 76:187–193. doi:10.1902/jop.2005.76.2.187

    Article  PubMed  Google Scholar 

  23. Azevedo LH, Paula Eduardo F, Moreira MS, Paula Eduardo C, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth. Lasers Med Sci 21:86–89. doi:10.1007/s10103-006-0379-9

    Article  PubMed  Google Scholar 

  24. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28:S-3. doi:10.1089/pho.2010.2771

    Article  Google Scholar 

  25. Fernandes AP, Junqueira MDA, Marques NCT, Machado MAAM, Santos CF, Oliveira TM, Sakai VT (2016) Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 24:332–337. doi:10.1590/1678-775720150275

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265. doi:10.1002/lsm.20008

    Article  PubMed  Google Scholar 

  27. Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30:2259–2264. doi:10.1007/s10103-015-1803-9

    Article  PubMed  Google Scholar 

  28. Ferreira MPP, Ferrari RAM, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DAB, Fernandes KPS (2009) Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 27:901–906. doi:10.1089/pho.2008.2427

    Article  PubMed  Google Scholar 

  29. Turrioni APS, Montoro LA, Basso FG, Almeida LDFDD, Costa CADS, Hebling J (2015) Dose-responses of stem cells from human exfoliated teeth to infrared LED irradiation. Braz Dent J 26:409–415. doi:10.1590/0103-6440201300148

    Article  PubMed  Google Scholar 

  30. Shekar R, Ranganathan K (2012) Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth. Indian J Dent Res 23:838. doi:10.4103/0970-9290.111281

    PubMed  Google Scholar 

  31. Kim JH, Jeon M, Song JS, Lee JH, Choi BJ, Jung HS, Kim SO (2014) Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth. PLoS One 9:e102893. doi:10.1371/journal.pone.0102893

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miyata H, Genma T, Ohshima M, Yamaguchi Y, Hayashi M, Takeichi O, Otsuka K (2006) Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation of cultured human dental pulp cells by low-power gallium-aluminium-arsenic laser irradiation. Int Endod J 39:238–244. doi:10.1111/j.1365-2591.2006.01080.x

    Article  CAS  PubMed  Google Scholar 

  33. Kueng W, Silber E, Eppenberger U (1989) Quantification of cells cultured on 96-well plates. Anal Biochem 182:16–19. doi:10.1016/0003-2697(89)90710-0

    Article  CAS  PubMed  Google Scholar 

  34. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the volunteers and their guardians for consenting to participate in this study, and the São Paulo Research Foundation (FAPESP) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thais Marchini Oliveira.

Ethics declarations

Funding

This study received financial support from the São Paulo Research Foundation (FAPESP) (grant nos. 2013/16156-0, 2013/18886-5, and 2015/19696-0).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board regarding ethical aspects (protocol CAAE 21032913.0.0000.5417), and the procedures were performed according to the Helsinki Declaration.

Informed consent

Parents and guardians of the children signed informed consent forms after receiving information about the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, N.C.T., Neto, N.L., Prado, M.T.O. et al. Effects of PBM in different energy densities and irradiance on maintaining cell viability and proliferation of pulp fibroblasts from human primary teeth. Lasers Med Sci 32, 1621–1628 (2017). https://doi.org/10.1007/s10103-017-2301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2301-z

Keywords

Navigation