Skip to main content

Advertisement

Log in

Study of photodynamic therapy in the control of isolated microorganisms from infected wounds—an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The effective treatment of infected wounds continues to be a serious challenge, mainly due to the rise of antibiotic-resistant bacteria. Photodynamic therapy (PDT) refers to the topical or systemic administration of a non-toxic, photosensitizing agent (PS), followed by irradiation with visible light of a suitable wavelength. The possibility of applying the PDT locally is what makes it so favorable to the treatment of infected wounds. The goal of this study was to evaluate the action of the PDT in the inactivation in vitro of microorganisms coming from infected wounds, using methylene blue (MB) and photodithazine (PDZ) as the PS and comparing the efficacy of these two compounds for PDT on bacteria. For the application of PDT, isolated microorganisms identified from material collected from wounds were suspended in a saline solution containing 106 viable cells/ml. Each isolated microorganism was submitted to PDT with MB and with PDZ in accordance with the following treatment groups: N/T—no treatment; T1—PDT with PDZ; T2—PDT with MB; T3—irradiation without PS; T4—treatment with PDZ without light; and T5—treatment with MB without light. As a light source, an LED-based device was used (Biopdi/Irrad-Lead 660), composed of 54 LEDs, each with 70 mW of power in the 660 nm region of the electromagnetic spectrum. Each tray of 96 wells was irradiated with an intensity of 25 mW/cm2 and a dose of light of 50 J/cm3 for 33 min. All the tests were made in duplicate. It was then concluded that the PDT with PDZ was capable of inhibiting the growth of gram-positive bacteria samples, however it did not have the same effect on gram-negative bacteria, which showed growth greater than 100,000 CFU; the PDT with MB showed an effectiveness on gram-positive as well as gram-negative bacteria, for it was able to inhibit bacterial growth in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dai T, Huang Y, Hamblin MR (2010) Photodynamic therapy for localized infections—state of the art. Photodiagn Photodyn Ther 6(3–4):170–188

    Google Scholar 

  2. Schastak S, Ziganshyna S, Gitter B, Wiedemann P, Claudepierre T (2010) Efficient photodynamic therapy against gram-positive and gram-negative bacteria using THPTS, a cationic photosensitizer excited by infrared wavelength. PloS one 5(7): e11674 1-8

    Google Scholar 

  3. Tavares A, Carvalho CMB, Faustino MA, Neves MGPMS, Tomé JPC, Tomé AC, Cavaleiro JAS, Cunha A, Gomes NCM, Alves E, Almeida A (2010) Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Marine drugs 8(1):91–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Haddad MCL, Bruschi LC, Martins EAP (2000) Influência do açúcar no processo de cicatrização de incisões cirúrgicas infectadas. Rev latino-am enfermagem 8(1):65 [Portuguese]

    Article  Google Scholar 

  5. Alves DFS, Júnior FCC, Cabral PPAC, Junior RMO, Rego ACM, Medeiros AC (2008) Efeitos da aplicação tópica do mel de Melipon subnitida em feridas infectadas de ratos. Rev Col Bras Cir 35(3):188–193 [Portuguese]

    Article  Google Scholar 

  6. Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, Wilson M (2009) In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 9(29):1–8

    Google Scholar 

  7. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Calin MA, Ion RM (2011) Optical method for monitoring of photodynamic inactivation of bacteria. J Biol Phys 37(1):107–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lambrechts SAG, Demidova TN, Aalders MCG, Hasan T, Hamblin MR (2005) Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem Photobiol Sci 4(7):503–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fimple JL, Fontana CR, Foschi F, Ruggiero K, Song X, Pagonis TC, Tanner ACR, Kent R, Doukas AG, Stashenkko PP, Soukos NS (2008) Photodynamic treatment of endodontic polymicrobial infection in vitro. J Endod 34(6):728–734

    Article  PubMed Central  PubMed  Google Scholar 

  11. Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42(1):38

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St. Denis TG, Ribeiro MS (2012) Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 3(April):1–16

    Google Scholar 

  13. Biel MA, Sievert C, Usacheva M, Teichert M, Balcom J (2011) Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. Int Forum Allergy Rhinol 1(5):329–334

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fontana CR, Abernathy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 44(6):751–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Demidova TN, Hamblin MR (2011) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17(3):245–254

    Google Scholar 

  16. Josefsen LB, Boyle RW (2008) Photodynamic therapy and the development of metal-based photosensitisers. Metal-based drugs 2008:276109

    Article  PubMed Central  PubMed  Google Scholar 

  17. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  PubMed  Google Scholar 

  18. Huang L, Dai T, Hamblin MR (2010) Antimicrobial photodynamic inactivation and photodynamic therapy for infections. (C. J. Gomer, Ed.). Methods in Molecular Biology, 635, 155–173

    Google Scholar 

  19. Martins CR, PAVARINA Ana Cláudia, Dovigo Lívia Nordi, Ribeiro APD, Brunetti IL, GIAMPAOLO ET (2009) Avaliação in vitro da efetividade da terapia fotodinâmica antimicrobiana na inativação de Staphylococcus Aureus.. In: XXI Congress of Scientific Initiation UNESP., São José dos Campos. XXI Congress of Scientific Initiation UNESP.,2009. p. 06603-06606. [Portuguese]

  20. Paschoal MAB (2009) Avaliação in vitro da terapia fotodinâmica sobre microrganismos cariogênicos presentes na saliva de crianças. Dissertação (Mestrado) - Faculdade de Odontologia de Bauru. Universidade de São Paulo [Portuguese]

  21. Zeina B, Greenman J, Purcell WM, Das B (2001) Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol 144(2):274–278

    Article  CAS  PubMed  Google Scholar 

  22. Peloi LS, Soares RRS, Biondo CEG, SouzaVR HN, Kimura E (2008) Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 33(2):231–237

    Article  CAS  PubMed  Google Scholar 

  23. Choi SS, Lee HK, Chae HS (2010) In vitro photodynamic antimicrobial activity of methylene blue and endoscopic white light against Helicobacter pylori 26695. J Photochem Photobiol B Biol 101(3):206–209

    Article  CAS  Google Scholar 

  24. Perussi JR (2007) Inativação Fotodinâmica de microorganismos. Quimica Nova 30(4):988–994 [Portuguese]

    Article  CAS  Google Scholar 

  25. Fontana CR, Lerman MA, Patel N, Grecco C, de Souza Costa CA, Amiji MM, Bagnato VS et al (2012) Safety assessment of oral photodynamic therapy in rats. Lasers Med Sci. doi:10.1007/s10103-012-1091-6

  26. Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, Wilson M (2009) In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 9(29):1–8

    Google Scholar 

  27. Ragàs X, Dai T, Tegos GP, Agut M, Nonell S, Hamblin MR (2010) Photodynamic inactivation of Acinetobacter baumannii using phenothiazinium dyes: in vitro and in vivo studies. Lasers Surg Med 42(5):384–390

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zeina B, Greenman J, Corry D, Purcell WM (2002) Cytotoxic effects of antimicrobial photodynamic therapy on keratinocytes in vitro. Br J Dermatol 146(4):568–573

    Article  CAS  PubMed  Google Scholar 

  29. Tegos GP, Hamblin MR (2006) Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 50(1):196–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Choi SS, Lee HK, Chae HS (2010) In vitro photodynamic antimicrobial activity of methylene blue and endoscopic white light against Helicobacter pylori 26695. J Photochem Photobiol B, Biology, 101(3)

  31. Zeina B, Greenman J, Purcell WM, Das B (2001) Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol 144(2):274–278

    Article  CAS  PubMed  Google Scholar 

  32. Kashef N, Esmaeeli Djavid G, Siroosy M, Taghi Khani A, Hesami Zokai F, Fateh M (2011) Photodynamic inactivation of drug-resistant bacteria isolated from diabetic foot ulcers. Iranian J Microbiol 3(1):36–41

    CAS  Google Scholar 

  33. Coutinho F, Giordano V, Santos CM, Carneiro AF, Amaral N P, Touma MC, Giordano M (2007) O efeito do laser de baixa energia no crescimento bacteriano “in vitro”. Rev. Bras. de Ortopedia [Portuguese]

  34. Nussbaum E, Lilge L, Mazzulli T (2002) Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1–50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg 20(6):325–333

    Article  PubMed  Google Scholar 

  35. Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A, Wharton T, Hamblin (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine (Lond) 5(10):1525–1533. doi:10.2217/nnm.10.98

    Article  CAS  Google Scholar 

  37. Maisch T, Bosl C, Szeimies RM, Lehn N, Abels C (2005) Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob Agents Chemother 49:1542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gad F, Zahra T, Hasan T, Hamblin MR (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria. Antimicrob Agents Chemother 48:2173–2178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Araújo PV, Teixeira KI, Lanza L, Cortes ME, Poletto LT (2009) In vitro lethal photosensitization of S. mutans using methylene blue and toluidine blue O as photosensitizers. Acta Odontol Latinoamericana: AOL 22(2):93

    Google Scholar 

  40. Ferro S, Ricchelli F, Mancini G, Tognon G, Jori G (2006) Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by liposome-delivered photosensitizing agents. J Photochemi Photobiol B 83(2):98–104

    Article  CAS  Google Scholar 

  41. Metcalf D, Robinson C, Devine D, Wood S (2006) Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 58(1):190–192

    Article  CAS  PubMed  Google Scholar 

  42. Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CL, Kent R, Goodson JM, Tanner A, Soukos NS (2009) The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 44(6):751–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Cn S, Gibbs A, Pedigo L, Andersen D, Ng L (2009) In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture. Photochem Photobiol 85(1):137–143

    Article  Google Scholar 

  44. Usacheva MN, Teichert MC, Biel MA (2001) Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg Med 29:165–173

    Article  CAS  PubMed  Google Scholar 

  45. Miyabe M (2007) Efeito fotodinamico antimicrobiano sobre cepas de Staphylococcus spp. Isoladas de pacientes submetidos à antibioticoterapia prolongada. 2007. Dissertação de mestrado (Mestrado Profissional na área de Lasers em Odontologia). Instituto de Pesquisa Energéticas e Nucleares, São Paulo [Portuguese]

  46. Peloi LS, Soares RRS, Biondo CEG, Souza VR, Hioka N, Kimura E (2008) Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 33(2):231–237

    Article  CAS  PubMed  Google Scholar 

  47. Park JH, Ahn MY, Kim YC, Kim SA, Moon YH, Ahn SG, Yoon JH (2012) In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29. Biol Pharm Bull 35(4):509–514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo (Foundation of Research Support of the São Paulo State) and Fundação Valeparaibana de Ensino. Paraiba Valley Teaching Foundation)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Ferreira Strixino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira de Lima Carvalho, D., Guerra Pinto, J., Di Paula Costa Sorge, C. et al. Study of photodynamic therapy in the control of isolated microorganisms from infected wounds—an in vitro study. Lasers Med Sci 29, 113–120 (2014). https://doi.org/10.1007/s10103-013-1283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1283-8

Keywords

Navigation