Skip to main content

Advertisement

Log in

Life-cycle assessment of bioethanol production from sweet sorghum stalks cultivated in the state of Yucatan, Mexico

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Bioethanol is being promoted in Mexico to be used in a blend with gasoline. On the north of the Yucatan peninsula, bioethanol could be produced from sweet sorghum, as it can grow efficiently on this land; it can be harvested 2–3 times in a year and possesses a better agronomical stability than sugarcane with low nitrogen requirements and high productivity. In this work , the potential environmental impacts and energy efficiency of bioethanol production from sweet sorghum were evaluated using life-cycle assessment. Four scenarios were evaluated: scenario PI considered only bioethanol production from the stalk juice; scenarios PII and PIII added cogeneration from the dry-stalk biomass in single and combined cycle, respectively. Scenario PIV considered bioethanol production from both stalk juice and dry-stalk biomass. Scenario PI demanded more fossil energy than what was generated as bioethanol, while scenarios PII and PIII were fossil energy independent. Scenario PIII showed the higher net energy ratio (1.89) and a better environmental performance in all CML-IA baseline impact categories. In terms of global warming potential, the scenario PIII showed a mitigation potential of 16% with respect to the fossil reference. In the categories where the sweet sorghum scenarios represented larger emissions than the fossil reference, it was due mainly to the use of fertilizers and the conventional energy consumption in the various processing steps of the biomass. Scenario PIV showed the highest energy demand and worst environmental performance due to large demands of energy and chemicals in the bagasse pretreatment step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADP:

Abiotic depletion potential

AP:

Acidification potential

ART:

Agroscope Reckenholz-Tänikon (research station)

CED:

Cumulative energy demand

CFC:

Chlorofluorocarbon

CML:

Institute of Environmental Sciences of Leiden University

EP:

Eutrophication potential

FAEP:

Freshwater aquatic ecotoxicity potential

GHG:

Greenhouse gas

GWP:

Global warming potential

HTP:

Human toxicity potential

IEE:

Intelligent Energy Europe

LCA:

Life-cycle assessment

MAEP:

Marine aquatic ecotoxicity potential

NER:

Net energy ratio

ODP:

Ozone layer depletion potential

PI:

Scenario I—bioethanol production from juice

PII:

Scenario II—bioethanol and electricity production by simple steam power plant

PIII:

Scenario III—bioethanol and electricity production with combination cycle power plant

PIV:

Scenario IV—bioethanol production from juice and bagasse

POCP:

Photochemical ozone creation potential

RSB:

Roundtable for sustainable biomaterials

SAGARPA:

Ministry of Agriculture, Rural Development, Fishery and Food (Mexico)

SSF:

Simultaneous saccharification and fermentation

TEP:

Terrestrial ecotoxicity potential

References

  • Acreche MM, Valeiro AH (2013) Greenhouse gasses emissions and energy balances of a non-vertically integrated sugar and ethanol supply chain: a case study in Argentina. Energy 54:146–154

    Article  CAS  Google Scholar 

  • Almodares A, Hadi MR (2009) Production of bioethanol from sweet sorghum: a review. Afr J Agric Res 4:772–780

    Google Scholar 

  • Amores MJ, Mele FD, Jiménez L, Castells F (2013) Life cycle assessment of fuel ethanol from sugarcane in Argentina. Int J Life Cycle Assess 18:1344–1357

    Article  CAS  Google Scholar 

  • Barrera I, Amezcua-Allieri MA, Estupiñán L, Martínez T, Aburto J (2016) Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem Eng Res Des 107:91–101

    Article  CAS  Google Scholar 

  • Cai H, Dunn JB, Wang Z, Han J, Wang MQ (2013) Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States. Biotechnol Biofuels 141:1–15

    Google Scholar 

  • Chuck C, Pérez E, Heredia E, Serna SO (2011) Sorgo como un cultivo multifacético para la producción de bioetanol en México. Tecnologías, avances y áreas de oportunidad. Rev Mex Ing Quim 10:529–549

    Google Scholar 

  • Cordovés M, Delgado G, Bueno G (2009) Sorgo dulce: sus potencialidades productivas. ICIDCA, Sobre los Derivados de la Caña de Azúcar, Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar 43:15–21

    Google Scholar 

  • Dale BE, Seungdo K (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and Biodiesel. Biomass Bioenergy 29:426–439

    Article  Google Scholar 

  • Dávila-Gómez FJ, Chuck-Hernández C, Pérez-Carrillo E, Rooney WL, Serna-Saldívar SO (2011) Evaluation of bioethanol production from five different varieties of sweet and forage sorghums (Sorghum bicolor (L) Moench). Ind Crop Prod 33:611–616

    Article  CAS  Google Scholar 

  • Diario Oficial de la Federación (2008) Cámara de Diputados del H. Congreso de la Unión, Secretaria General y Secretaria de Servicios Parlamentarios. Ley de promoción y desarrollo de los Bioenergéticos. Centro de Documentación, México, p 12

  • Equihua-Sánchez M (2013) Obtención de etanol por sacarificación y fermentación simultánea a partir de biomasa lignocelulósica de tallos de sorgo dulce. Dissertation, Centro de Investigación Científica de Yucatán A.C. México

  • Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in Life Cycle Assessment. J Environ Manag 91:1–21

    Article  Google Scholar 

  • Franco A, Giannini N (2005) Optimum thermal design of modular compact heat exchangers structure for heat recovery steam generators. Appl Thermal Eng 25:1293–1313

    Article  CAS  Google Scholar 

  • Franco-Brito S (2011) Estudio de la producción de azúcares en cuatro variedades de sorgo dulce para la producción de etanol. Dissertation, Centro de Investigación Científica de Yucatán A.C. México

  • García CA, Fuentes A, Hennecke A, Riegelhaupt E, Manzini F, Masera O (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energ 88:2088–2097

    Article  CAS  Google Scholar 

  • Gilio L, Moraes MAFD (2016) Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: a spatial dynamic panel approach. Energy Econ 58:27–37

    Article  Google Scholar 

  • Hattori T, Morita S (2010) Energy crops for sustainable bioethanol production; which, where and how? Plant Prod Sci 13:221–234

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (2016). http://www.inegi.org.mx/. Accessed 23 Aug 2017

  • Intelligent Energy Europe and Sweethanol (2011) Diffusion of a sustainable EU model to produce 1st generation ethanol from sweet sorghum in decentralised plants. https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/sweethanol_inter_sectorial_manual_en.pdf. Accessed 3 Oct 2016

  • Masera O, Coralli F, García C, Riegelhaupt E, Arias T, Vega J, Díaz R, Guerrero G, Cecotti L (2011) La bioenergía en México, situación y perspectivas. Cuaderno Temático No. 4, Red Mexicana de Bioenergía A.C., pp 7–15

  • Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10:146–165

    Article  Google Scholar 

  • Menichettia E, Otto M (2009) Energy balance & greenhouse gas emissions of biofuels from a life cycle perspective. In: Howarth RW, Bringezu S (eds) Biofuels: environmental consequences and interactions with changing land Use, 1st edn. SCOPE, Ithaca, pp 81–109

    Google Scholar 

  • Miao Z, Grift TE, Hansena AC, Tinga KC (2011) Energy requirement for comminution of biomass in relation to particle physical. Ind Crop Prod 33:504–513

    Article  CAS  Google Scholar 

  • Montes N, Salinas JR, González A, Loredo R, Díaz G (2009) Guía técnica de producción de sorgo dulce [Sorghum bicolor (L.) Moench] en Tamaulipas. INIFAP—Centro de Investigaciones Regional del Noroeste, Campo Experimental Río Bravo, México., p. 46 www.compucampo.com/tecnicos/guiatecnica-sorgodulce-tams.pdf. Accessed 3 Oct 2016

  • Monti A, Zegada LW (2012) Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenergy 40:1–12

    Article  Google Scholar 

  • Moraes MAFD, Piedade Bachi MR, Caldarelli CE (2016) Accelerated growth of the sugarcane, sugar, and ethanol sectors in Brazil (2000–2008): effects on municipal gross domestic product per capita in the south-central region. Biomass Bioenergy 91:116–125

    Article  Google Scholar 

  • Murillo-Alvarado PE, Guillén-Gosálbez G, Ponce-Ortega JM, Castro-Montoya AJ, Serna-González M, Jiménez L (2015) Multi-objective optimization of the supply chain of biofuels from residues of the tequila industry in Mexico. J Clean Prod 108:422–441

    Article  Google Scholar 

  • Negro MJ, Solano ML, Ciria P, Carrasco J (1999) Composting of sweet sorghum bagasse with other wastes. Bioresour Technol 67:89–92

    Article  CAS  Google Scholar 

  • Nemecek T, Schnetzer J (2012) Methods of assessment of direct field emissions for LCIs of agricultural production systems. Agroscope Reckenholz-Tänikon Research Station. https://www.researchgate.net/file.PostFileLoader.html?id. Accessed 10 Nov 2015

  • Olukoya A, Bellmer D, Whiteley JR, Aichele CP (2015) Evaluation of the environmental impacts of ethanol production from sweet sorghum. Energy Sustain Dev 24:1–8

    Article  CAS  Google Scholar 

  • Peniche IL (2012) Evaluación de cuatro variedades de sorgo dulce para la producción de bioetanol en el oriente de Yucatán, México. Dissertation. Centro de Investigación Científica de Yucatán A.C. México

  • Rao SS, Patil JV, Prasad PVV, Reddy DCS, Mishra JS, Umakanth AV, Reddy BVS, Kumar AA (2013) Sweet sorghum planting effects on stalk yield and sugar quality in semi-arid tropical environment. Agron J 105:1458–1465

    Article  Google Scholar 

  • Reddy B, Reddy P (2003) Sweet sorghum: characteristics and potential. Int Sorghum Millets Newslett 44:26–28

    Google Scholar 

  • Rendon-Sagardi MA, Sanchez-Ramirez C, Cortes-Robles G, Alor-Hernandez G, Cedillo-Campos MG (2014) Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico. Appl Energ 123:358–367

    Article  Google Scholar 

  • Rolz C, de León R, Mendizábal de Montenegro AL, Cifuentes R (2014) Ethanol from sweet sorghum in a year-round production cycle. Biomass Conv Bioref 4:341–350

    Article  CAS  Google Scholar 

  • Roundtable on Sustainable Biomaterials (2014) GHG calculator http://rsb.org/ghgcalc/. Accessed 3 Oct 2016

  • Sacramento Rivero JC, Eastmond-Spencer A, Becerril García J, Navarro-Pineda F (2016) A three dimensional sustainability evaluation of jatropha plantations in Yucatan, Mexico. Sustainability 8:1316

    Article  Google Scholar 

  • SAGARPA (2009) Programa de Producción Sustentable de Insumos para Bioenergéticos y de Desarrollo Científico y Tecnológico, Ed. SAGARPA, México

  • SAGARPA (2012), Potencial productivo de especies agrícolas de importancia socioeconómica en México. http://www.cmdrs.gob.mx/sesiones/Documents/2012/5_sesion/inifap_estudio.pdf. Accessed 3 Oct 2016

  • Sanchez A, Magaña G, Partida MI, Sanchez S (2016) Bi-dimensional sustainability analysis of a multi-feed biorefinery design for biofuels co-production from lignocellulosic residues and agro-industrial wastes. Chem Eng Res Des 107:195–217

    Article  CAS  Google Scholar 

  • Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Campos-Garcia J, Sosa-Aguirre CR (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38:725–732

    Article  CAS  Google Scholar 

  • Secretaría de Energía (2015) Inventario Nacional de Energía Renovable. http://inere.energia.gob.mx/publica/version4.2/. Accessed 3 Oct 2016

  • Shonnard DR, Klemetsrud B, Sacramento-Rivero JC, Navarro-Pineda FS, Hilbert J, Handler R, Suppen N, Donovan RP (2015) A review of environmental life cycle assessments of liquid transportation biofuels in the pan American Region. Environ Manag 56:1356–1376

    Article  Google Scholar 

  • Singh A, Olsen SI, Pant D (2013) Importance of life cycle assessment of renewable energy sources. In: Singh A, Olsen SI, Pant D (eds) Life cycle assessment of renewable energy sources, 1st edn. Springer-Verlag, London, pp 1–11

    Chapter  Google Scholar 

  • U.S. Department of Energy (2015) Energy efficiency & renewable energy efficiency, lower and higher heating values of fuels. http://hydrogen.pnl.gov/tools/lower-and-higher-heating-values-fuels Accessed 3 Oct 2016

  • Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T (2011) Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Res 120:38–46

    Article  Google Scholar 

  • Wang F, Liu C (2009) Development of economic refining strategy of sweet sorghum in the inner Mongolia region in China. Energ Fuel 23:4137–4142

    Article  CAS  Google Scholar 

  • Wang M, Chen Y, Xia X, Li J, Liu J (2014) Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresour Technol 163:74–81

    Article  CAS  Google Scholar 

  • Wang M, Pan X, Xia X, Xi B, Wang L (2015) Environmental sustainability of bioethanol produced from sweet sorghum stem on saline–alkali land. Bioresour Technol 187:113–119

    Article  CAS  Google Scholar 

  • World Bank (2014) Fossil fuel energy consumption. http://data.worldbank.org/indicator/EG.USE.COMM.FO.ZS?view=chart. Accessed 4 April 2017

  • Yin R, Liu R, Mei Y, Fei W, Sun X (2013) Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel 112:96–104

    Article  CAS  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Renew Sustain Energy Rev 71:475–501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Bioenergy Thematic Network (Red Temática de Bioenergía, CONACYT) for its support on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Felipe Barahona-Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Sánchez, P., Navarro-Pineda, F.S., Sacramento-Rivero, J.C. et al. Life-cycle assessment of bioethanol production from sweet sorghum stalks cultivated in the state of Yucatan, Mexico. Clean Techn Environ Policy 20, 1685–1696 (2018). https://doi.org/10.1007/s10098-017-1480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-017-1480-4

Keywords

Navigation