Skip to main content

Advertisement

Log in

A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BD:

Biodiesel

HRJ:

Hydro-renewable jet fuel

DAYCENT:

Daily Century

dLUC:

Direct land-use change

EBAMM:

ERG Biofuel Analysis Meta-Model

EPA:

Environmental Protection Agency

EtOH:

Ethanol

EU-RED:

European Union-Renewable Energy Directive

GHG:

Greenhouse gases

GREET:

Greenhouse gases, regulated emissions, and energy use in transportation

GWP:

Global warming potential

IPCC:

Intergovernmental Panel on Climate Change

ISCC:

International Sustainability & Carbon Certification

LCA:

Life-cycle assessment

LCI:

Life-cycle inventory

LCIA:

Life-cycle impact assessment

RSB:

Roundtable on sustainable biomaterials

US-RFS:

United States-Renewable Fuel Standard

References

  • Adom F, Maes A, Workman C, Clayton-Nierderman Z, Thoma G, Shonnard D (2012) Regional carbon footprint of dairy feed rations for milk production in the United States. Int J Life Cycle Assess 17:520–534

    Article  CAS  Google Scholar 

  • Agusdinata DB, Zhao F, Ileleji K, DeLaurentis D (2011) Life cycle assessment of potential biojet fuel production in the United States. Environ Sci Technol 45:9133–9143. doi:10.1021/es202148g

    Article  CAS  Google Scholar 

  • Allen DT et al (2009) Framework and Guidance for Estimating Greenhouse Gas Footprints of Aviation Fuels. http://caafi.org/information/pdf/AFRL-RZ-WP-TR-2009-2206.pdf

  • Allen DT, Shonnard DR (2002) Green engineering: environmentally conscious design of chemical processes. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Amores MJ, Mele FD, Jimenez L, Castells F (2013) Life cycle assessment of fuel ethanol from sugarcane in Argentina. Int J Life Cycle Assess 18:1344–1357. doi:10.1007/s11367-013-0584-2

    Article  CAS  Google Scholar 

  • ANL (2014) GREET1_2013 Model. Transportation Technology R&D Center, Argonne

    Google Scholar 

  • Bailis RE, Baka JE (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44:8684–8691. doi:10.1021/es1019178

    Article  CAS  Google Scholar 

  • Bailis R, Kavlak G (2013) Environmental implications of Jatropha biofuel from a Silvi-Pastoral production system in Central-West Brazil. Environ Sci Technol 47:8042–8050. doi:10.1021/es303954g

    Article  CAS  Google Scholar 

  • Bare J, Thomas G, Norris G (2006) Development of the method and U.S Normalization database for life cycle impact assessment and sustainability metrics. Environ Sci Technol 40:5108–5115. doi:10.1021/es052494b

    Article  CAS  Google Scholar 

  • BEFSCI (2011) A compilation of bioenergy sustainability initiatives overview, vol 2013

  • Bruinsma B (2009) Producción de biodiesel de palma aceitera y jatropha en la Amazona del Peru y el impacto para la sostenibilidad. Open Universiteit Nederland

  • Castanheira EG, Freire FM (2011) Environmental performance of palm oil biodiesel—a life cycle persepctive. In: IEEE international symposium on sustainable systems and technology (ISSST), pp 1–6. doi: 10.1109/ISSST.2011.5936843

  • Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18:647–658. doi:10.1007/s11367-012-0465-0

    Article  CAS  Google Scholar 

  • CFR (2010) Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

  • Chavez-Rodriguez MF, Nebra SA (2010) Assessing GHG emissions, ecological footprint, and water linkage for different fuels. Environ Sci Technol 44:9252–9257. doi:10.1021/es101187h

    Article  CAS  Google Scholar 

  • Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451

    Article  CAS  Google Scholar 

  • Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447

    Article  Google Scholar 

  • Chiu YW, Suh S, Pfister S, Hellweg S, Koehler A (2012) Measuring ecological impact of water consumption by bioethanol using life cycle impact assessment. Int J Life Cycle Assess 17:16–24. doi:10.1007/s11367-011-0328-0

    Article  CAS  Google Scholar 

  • Chiu YW, Walseth B, Suh S (2009) Water embodied in bioethanol in the United States. Environ Sci Technol 43:2688–2692

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819. doi:10.1021/es902838n

    Article  CAS  Google Scholar 

  • Cleary J (2009) Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ Int 35:1256–1266. doi:10.1016/j.envint.2009.07.009

    Article  Google Scholar 

  • Consorcio CUE (2012) Evaluacion del ciclo de vida de la cadena de produccion de biocombustibles en Colombia vol ATN/JC-10826-CO y ATN/JF-10827-CO. Medellin

  • da Costa RE, Yanez E, Torres EA (2006) The energy balance in the production of palm oil biodiesel—two case studies: Brazil and Colombia, pp 1–5

  • de Souza S, Pereira S, Pacca S, Turra de Avila M, Borges JLB (2010) Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energy 35:2552–2561. doi:10.1016/j.renene.2010.03.028

    Article  Google Scholar 

  • Diaz-Chavez R (2014) Indicators for socio-economics sustainability assessment. Springer, Switzerland

    Book  Google Scholar 

  • Ecoinvent 3 Database (2014) http://www.ecoinvent.org/

  • Emmenegger FM, Pfister S, Koehler A, Giovanetti L, Arena AP, Zah R (2011) Taking into account water use impacts in the LCA of biofuels: an Argentinean case study. Int J Life Cycle Assess 16:869–877. doi:10.1007/s11367-011-0327-1

    Article  Google Scholar 

  • EPA (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis, U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DC

  • FACT (2010) The Jatropha handbook: from cultivation to applications FACT foundation http://www.fact-foundationcom/en/Knowledge_and_Expertise/Handbooks

  • Fan J, Handler RM, Shonnard DR, Kalnes TN (2012) A review of life cycle greenhouse gas emissions of hydroprocessed jet fuels from renewable oil and fats. Int J Environ Sci Eng Res (IJESER) 3:114–138

    Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  Google Scholar 

  • GaBi Databases (2014) http://www.gabi-software.com/america/databases/

  • Galbusera S, Hilbert JA (2011) Analisis de emisiones de gases de efecto invernadero de la produccion agricola extensiva y estudio de la “huella de carbono” de los productos derivados de la soja en la Republica de Argentina. INTA, Argentina

    Google Scholar 

  • Garcia CA, Fuentes A, Hennecke A, Riegelhaupt E, Manzini F, Masera O (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energy 88:2088–2097. doi:10.1016/j.apenergy.2010.12.072

    Article  CAS  Google Scholar 

  • Graefe S et al (2011) Energy and carbon footprints of ethanol production using banana and cooking banana discard: a case study from Costa Rica and Ecuador. Biomass Bioenergy 35:2640–2649. doi:10.1016/j.biombioe.2011.02.051

    Article  CAS  Google Scholar 

  • Hilbert JA, Galbusera S (2011) Analisis de emisiones produccion de biodiesel—AG-Energy. Instituto Nacional de Tecnologia Agropecuaria

  • Hilbert JA, Galligani S (2014) Argentina. Springer, New York

    Book  Google Scholar 

  • Huo H, Wang M, Bloyd C, Putsche V (2008) Life-cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels. Environ Sci Technol 43:750–756

    Article  Google Scholar 

  • IPCC (2006a) Chapter 2: generic methodologies applicable to multiple land-use categories. In: Aalde H, Gonzalez P, Gytarsky M, Krug T, Kurz WA, Lasco RD, Martino DL, McConkey BG, Ogle S, Paustian K, Raison J, Ravindranath NH, Smith P, Somogyi Z, Amstel AV, Verchot L (eds) IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry, and other land use

  • IPCC (2006b) Chapter 5: cropland. IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry, and other land use

  • IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge

  • Iriarte A, Villalobos P (2013) Greenhouse gas emissions and energy balance of sunflower biodiesel: identification of its key factors in the supply chain Resources. Conserv Recycl 73:46–52. doi:10.1016/j.resconrec.2013.01.014

    Article  Google Scholar 

  • Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J Clean Prod 18:336–345. doi:10.1016/j.jclepro.2009.11.004

    Article  CAS  Google Scholar 

  • Iriarte A, Rieradevall J, Gabarrell X (2012) Transition towards a more environmentally sustainable biodiesel in South America: the case of Chile. Appl Energy 91:263–273. doi:10.1016/j.apenergy.2011.09.024

    Article  CAS  Google Scholar 

  • ISO 14040 (1997) Environmental Management–Life Cycle Assessment—Principles and Framework

  • ISO 14040 (2006) Environmental Management—Life Cycle assessment—Principles and Framework

  • ISO 14041 (1998) Environmental management—Life Cycle Assessment—Life Cycle Interpretation

  • ISO 14042 (1998) Life Cycle Assessment—Impact Assessment

  • ISO 14043 (1998) Environmental Management—Life Cycle Assessment—Life Cycle Interpretation

  • ISO 14044 (2006) Environmental Management—Life Cycle Assessment—Requirements and Guidelines

  • Kim S, Dale BE (2005) Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions. Biomass Bioenergy 28:475–489. doi:10.1016/j.biombioe.2004.11.005

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2009) Regional variations in greenhouse gas emissions of biobased products in the United States—corn-based ethanol and soybean oil. Int J Life Cycle Assess 14:540–546. doi:10.1007/s11367-009-0106-4

    Article  Google Scholar 

  • Koch S (2003) LCA of biodiesel in Costa Rica: an environmental study on the manufacturing and use of palm oil methyl ester. San Jose

  • Krohn BJ, Fripp M (2012) A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Appl Energy 92:92–98. doi:10.1016/j.apenergy.2011.10.025

    Article  Google Scholar 

  • Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 10:109–126

    Article  CAS  Google Scholar 

  • Liska AJ, Yang HS, Bremer VR, Klopfenstein TJ, Walters DT, Erickson GE, Cassman KG (2009) Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. J Indus Ecol 13:58–74. doi:10.1111/j.1530-9290.2008.00105.x

    Article  CAS  Google Scholar 

  • Luo L, van der Voet E, Huppes G, Udo de Haes HA (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14:529–539. doi:10.1007/s11367-009-0112-6

    Article  CAS  Google Scholar 

  • Mishra GS, Yeh S (2011) Life cycle water consumption and withdrawal requirements of ethanol from corn grain and residues. Environ Sci Technol 45:4563–4569. doi:10.1021/es104145m

    Article  CAS  Google Scholar 

  • Moser C, Hildebrandt T, Bailis R (2014) International sustainability standards and certification. Sustainable development of biofuels in Latin America and the Caribbean. Springer, New York

    Google Scholar 

  • Muench S, Guenther E (2013) A systematic review of bioenergy life cycle assessments. Appl Energy 112:257–273

    Article  Google Scholar 

  • Neupane B, Halog A, Dhungel S (2011) Attributional life cycle assessment of woodchips for bioethanol production. J Clean Prod 19:733–741. doi:10.1016/j.jclepro.2010.12.002

    Article  CAS  Google Scholar 

  • NREL (2014) U.S. Life Cycle Inventory Database, National Renewable Energy Laboratory

  • OECD (2014) Chapter 2 Biofuels. doi:10.1787/888932861168

  • Ometto AR, Hauschild MZ, Nelson Lopes RW (2009) Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 14:236–247. doi:10.1007/s11367-009-0065-9

    Article  CAS  Google Scholar 

  • Pradhan A, Shrestha DS, McAloon A, Yee W, Hass M, Duffield JA (2011) Energy life-cycle assessment of soybean biodiesel revisited. Am Soc Agric Biol Eng 5:1031–1039

    Google Scholar 

  • PRé Consultants (2011) SimaPro 7.2. http://www.earthshift.com/software/simapro

  • RED (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC vol 2013

  • RED (2012) Directive of the European Parliament and the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources

  • RSB (2011) Indicadores de cumplimiento de los principios y criterios de la RSB, vol 2013

  • SAIC (2006) Life Cycle Assessment: Principles and Practice, report to U.S. Environmental Protection Agency

  • Scown CD, Nazaroff WW, Mishra U, Strogen B, Lobscheid AB, Masanet E, Santero NJ, Horvath A, McKone TE (2012) Corrigendum: lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ Res Lett 7:019502

    Article  Google Scholar 

  • Searchinger T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  • SETAC (1991) A technical framework for life cycle assessment

  • SETAC (1993) Guidelines for life cycle assessment: a ‘code of practice’. In: Consoli F, Allen, D, Boustead I, Fava J, Franklin W, Jensen AA, Oude N, Parrish R, Perriman R, Postlethwaite D, Quay B, Seguin J, Vigon B. (ed). SETAC, Brussels

  • Shonnard DR, Campbell MB, Martin-Garcia AR, Kalnes TK (2012) Chemical engineering of bioenergy plants: concepts and strategies. Handbook of bioenergy crop plants, vol 1. CRC Press, Boca Raton

    Book  Google Scholar 

  • Skone T, Gerdes K (2008) Development of baseline data and analysis of life cycle greenhouse gas emissions of petroleum-based fuels, Washington, DC

  • Solomon BD, Bailis R (2014) Introduction. Springer, New York

    Google Scholar 

  • Souza S, Pereira S, Turra de Avila M, Pacca S (2012) Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass Bioenergy 44:70–79. doi:10.1016/j.biombioe.2012.04.018

    Article  CAS  Google Scholar 

  • Thomas PG, Lippiatt BC, Cooper J (2007) Life cycle impact assessment weights to support environmentally preferable purchasing in the United States. Environ Sci Technol 41:7551–7557. doi:10.1021/es070750

    Article  Google Scholar 

  • van Dam J, Junginger M, Faaij APC (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew Sustain Energy Rev 14:2445–2472. doi:10.1016/j.rser.2010.07.010

    Article  Google Scholar 

  • Velásquez HI, Ruiz AA, de Oliveira S (2010) Análisis energético y exergético del proceso de obtención de etanol a partir de la fruta del banano. Revista Facultad de Ingenieria Universidad de Antioquia 51:87–96

    Google Scholar 

  • Wang M, Wu M, Huo H (2007) Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett 2:024001

    Article  Google Scholar 

  • Wang M, Han J, Haq Z, Tyner WE, Wu M, Elgowainy A (2011a) Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenergy 35:1885–1896. doi:10.1016/j.biombioe.2011.01.028

    Article  CAS  Google Scholar 

  • Wang M, Huo H, Arora S (2011b) Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context. Energy Policy 39:5726–5736

    Article  CAS  Google Scholar 

  • Wang M, Han J, Dunn JB, Cai H, Elgowainy A (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:045905

    Article  Google Scholar 

  • Wu M, Wang M, Huo H (2006) Fuel-cycle assessment of selected bioethanol production pathways in the United States. Argonne National Laboratory. ANL/ESD/06-7 120

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance Special Issue: Biofuels—II: algal biofuels and microbial. Fuel Cells 102:159–165. doi:10.1016/j.biortech.2010.07.017

    CAS  Google Scholar 

  • Yang Y, Bae J, Kim J, Suh S (2012) Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Environ Sci Technol 46:3671–3678. doi:10.1021/es203641p

    Article  CAS  Google Scholar 

  • Zaimes GG, Khanna V (2013) Microalgal biomass production pathways: evaluation of life cycle environmental impacts. Biotechnol Biofuels 6:88. doi:10.1186/1754-6834-6-88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported in part by the U.S. National Science Foundation Grant CBET-1140152“RCN-SEES: A Research Coordination Network on Pan American Biofuels and Bioenergy Sustainability.” We would like to thank the U.S. National Science Foundation for partial support in writing this paper under Award Number 1105039, “OISE-PIRE Sustainability, Ecosystem Services, and Bioenergy Development Across the Americas.” The article benefited greatly from the comments of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Shonnard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shonnard, D.R., Klemetsrud, B., Sacramento-Rivero, J. et al. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region. Environmental Management 56, 1356–1376 (2015). https://doi.org/10.1007/s00267-015-0543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0543-8

Keywords

Navigation