Skip to main content

Advertisement

Log in

Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the well-known disease of the liver in adults and children throughout the world. The main manifestations related to NAFLD are an unusual storage of lipid in hepatocytes (hepatic steatosis) and progression of inflammation for non-alcoholic steatohepatitis (NASH). NAFLD is described as a multifactorial complication due to the genetic predisposition, metabolic functions, inflammatory, gut microbiota (GM), and environmental factors. The GM dysregulation among these factors is correlated to NAFLD development. In recent decades, advanced microbial profiling methods are continuing to shed light on the nature of the changes in the GM caused by NASH and NAFLD. In the current review, we aim to perform a literature review in different library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly obtained. This will be done in order to provide an overview of the relation between GM and NAFLD, and the role of prebiotics, probiotics, and fecal microbiota transplantation (FMT), as potential therapeutic challenges for NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164(3):337–340

    Article  CAS  PubMed  Google Scholar 

  2. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471

    Article  PubMed  Google Scholar 

  3. Bialvaei AZ, Kouhsari E, Salehi-Abargouei A, Amirmozafari N, Ramazanzadeh R, Ghadimi-Daresajini A, Sedighi M (2017) Epidemiology of multidrug-resistant Acinetobacter baumannii strains in Iran: a systematic review and meta-analysis. J Chemother 29(6):327–337

    Article  CAS  PubMed  Google Scholar 

  4. O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schroeder BO, Bäckhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22(10):1079

    Article  CAS  PubMed  Google Scholar 

  6. Zhi C, Huang J, Wang J, Cao H, Bai Y, Guo J, Su Z (2019) Connection between gut microbiome and the development of obesity. European Journal of Clinical Microbiology & Infectious Diseases:1–12

  7. Brunt EM (2010) Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7(4):195

    Article  PubMed  Google Scholar 

  8. Day C (2006) Genes or environment to determine alcoholic liver disease and non-alcoholic fatty liver disease. Liver Int 26(9):1021–1028

    Article  CAS  PubMed  Google Scholar 

  9. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM (1997) Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci 94(6):2557–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wigg A, Roberts-Thomson I, Dymock R, McCarthy P, Grose R, Cummins A (2001) The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut 48(2):206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, Jobin C, Lund PK (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5(8):e12191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chassaing B, Gewirtz AT (2014) Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol Pathol 42(1):49–53

    Article  PubMed  Google Scholar 

  13. Brandl K, Kumar V, Eckmann L (2017) Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol-Gastr Liver Physiol 312(5):G413–G419

    Google Scholar 

  14. Miele L, Marrone G, Lauritano C, Cefalo C, Gasbarrini A, Day C, Grieco A (2013) Gut-liver axis and microbiota in NAFLD: insight pathophysiology for novel therapeutic target. Curr Pharm Des 19(29):5314–5324

    Article  CAS  PubMed  Google Scholar 

  15. Meng X, Li S, Li Y, Gan R-Y, Li H-B (2018) Gut microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients 10(10):1457

    Article  PubMed Central  CAS  Google Scholar 

  16. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y (2015) Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 5:8096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miura K, Ohnishi H (2014) Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol: WJG 20(23):7381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Bieghs V, Trautwein C (2014) Innate immune signaling and gut-liver interactions in non-alcoholic fatty liver disease. Hepatobiliary Surg Nutr 3(6):377

    PubMed  PubMed Central  Google Scholar 

  19. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA, Seki E (2010) Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology 139(1):323–334. e327

    Article  CAS  PubMed  Google Scholar 

  20. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E (2013) Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57(2):577–589

    Article  CAS  PubMed  Google Scholar 

  21. Liu H-X, Keane R, Sheng L, Wan Y-JY (2015) Implications of microbiota and bile acid in liver injury and regeneration. J Hepatol 63(6):1502–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54(1):133–144

    Article  CAS  PubMed  Google Scholar 

  23. Stienstra R, Van Diepen JA, Tack CJ, Zaki MH, Van De Veerdonk FL, Perera D, Neale GA, Hooiveld GJ, Hijmans A, Vroegrijk I (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci 108(37):15324–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284(5418):1362–1365

    Article  CAS  PubMed  Google Scholar 

  26. Wieland A, Frank D, Harnke B, Bambha K (2015) Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther 42(9):1051–1063

    Article  CAS  PubMed  Google Scholar 

  27. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall H-U, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17(2):225–235

    Article  CAS  PubMed  Google Scholar 

  28. Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Radovanovic Spurnic A, Gmizic I, Stevanovic O, Djordjevic V, Lekic N (2019) Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature. Int J Mol Sci 20(2):395

    Article  PubMed Central  CAS  Google Scholar 

  29. Ferslew BC, Xie G, Johnston CK, Su M, Stewart PW, Jia W, Brouwer KL, Barritt AS (2015) Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci 60(11):3318–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, Takei H, Muto A, Nittono H, Ridlon JM (2013) Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 58(5):949–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M (2017) Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65(1):350–362

    Article  PubMed  Google Scholar 

  32. Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang Z-Z, Takahashi S (2015) Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 125(1):386–402

    Article  PubMed  Google Scholar 

  33. Mouzaki M, Wang AY, Bandsma R, Comelli EM, Arendt BM, Zhang L, Fung S, Fischer SE, McGilvray IG, Allard JP (2016) Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One 11(5):e0151829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  35. Canfora EE, Meex RC, Venema K, Blaak EE (2019) Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews Endocrinology 15(5):261–273

  36. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027

    Article  PubMed  Google Scholar 

  37. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18(1):190–195

    Article  PubMed  Google Scholar 

  38. Blaut M (2015) Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 74(3):227–234

    Article  CAS  PubMed  Google Scholar 

  39. Hara H, Haga S, Aoyama Y, Kiriyama S (1999) Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 129(5):942–948

    Article  CAS  PubMed  Google Scholar 

  40. Jakobsdottir G, Xu J, Molin G, Ahrne S, Nyman M (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8(11):e80476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Geuking MB, Köller Y, Rupp S, McCoy KD (2014) The interplay between the gut microbiota and the immune system. Gut Microbes 5(3):411–418

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7(4):e35240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, Barzilai N, Oren R, Fishman S (2011) Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol 54(6):1214–1223

    Article  CAS  PubMed  Google Scholar 

  45. Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D (2011) Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 31(9):1285–1297

  46. Tang A, Rabasa-Lhoret R, Castel H, Wartelle-Bladou C, Gilbert G, Massicotte-Tisluck K, Chartrand G, Olivié D, Julien A-S, de Guise J (2015) Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: a randomized trial. Diabetes Care 38(7):1339–1346

    Article  CAS  PubMed  Google Scholar 

  47. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. Advances in immunology. Elsevier, pp 91–119

  48. Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, Beyersdorf N, Dandekar T, Rosenstiel P, Geier A (2018) Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol J 6(10):1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou D, Qin Pan F-ZX, Zhang R-N, He C-X, Chen G-Y, Liu C, Chen Y-W, Fan J-G (2017) Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J Gastroenterol 23(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou D, Pan Q, Liu XL, Yang RX, Chen YW, Liu C, Fan JG (2017) Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation. J Gastroenterol Hepatol 32(9):1640–1648

    Article  CAS  PubMed  Google Scholar 

  51. Volynets V, Küper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, Königsrainer A, Bischoff SC, Bergheim I (2012) Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 57(7):1932–1941

    Article  CAS  PubMed  Google Scholar 

  52. Corbin KD, Zeisel SH (2012) Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression. Curr Opin Gastroenterol 28(2):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E (2019) The role of the microbiome in NAFLD and NASH. EMBO Mol Med 11(2):e9302

    Article  PubMed  CAS  Google Scholar 

  54. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140(3):976–986

    Article  CAS  PubMed  Google Scholar 

  55. Wagnerberger S, Spruss A, Kanuri G, Volynets V, Stahl C, Bischoff SC, Bergheim I (2012) Toll-like receptors 1–9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr 107(12):1727–1738

    Article  CAS  PubMed  Google Scholar 

  56. Stremmel W, Schmidt KV, Schuhmann V, Kratzer F, Garbade SF, Langhans C-D, Fricker G, Okun JG (2017) Blood trimethylamine-N-oxide originates from microbiota mediated breakdown of phosphatidylcholine and absorption from small intestine. PLoS One 12(1):e0170742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ackermann D, Schutze H (1910) The formation of trimethylamine by bacterium prodigiosum. Zentralb Physiol 24:210–211

    CAS  Google Scholar 

  58. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung Y-M (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang WW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116(3):448–455

    Article  CAS  PubMed  Google Scholar 

  60. Dumas M-E, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci 103(33):12511–12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barrea L, Annunziata G, Muscogiuri G, Di Somma C, Laudisio D, Maisto M, de Alteriis G, Tenore G, Colao A, Savastano S (2018) Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 10(12):1971

    Article  PubMed Central  CAS  Google Scholar 

  63. Logan B, Jones AW (2003) Endogenous ethanol production in a child with short gut syndrome. J Pediatr Gastroenterol Nutr 36(3):419–420

    Article  CAS  PubMed  Google Scholar 

  64. Cope K, Risby T, Diehl AM (2000) Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology 119(5):1340–1347

    Article  CAS  PubMed  Google Scholar 

  65. Nair S, Cope K, Risby T (2000) Obesity and female gender increase breath ethanol: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 118(4):A972

    Article  Google Scholar 

  66. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2):601–609

    Article  CAS  PubMed  Google Scholar 

  67. Nair S, Cope K, Terence RH, Diehl AM (2001) Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am J Gastroenterol 96(4):1200–1204

    Article  CAS  PubMed  Google Scholar 

  68. Zhu L, Baker RD, Zhu R, Baker SS (2016) Gut microbiota produce alcohol and contribute to NAFLD. Gut 65(7):1232–1232

    Article  CAS  PubMed  Google Scholar 

  69. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61(1):1600240

    Article  CAS  Google Scholar 

  70. Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, Mancini A (2018) Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches. Redox Biol 15:467–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, Vlieg JE-H, Strissel K, Zhao L, Obin M (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9(1):1

    Article  PubMed  CAS  Google Scholar 

  72. Cani PD, Van Hul M (2015) Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol 32:21–27

    Article  CAS  PubMed  Google Scholar 

  73. Zhu L, Baker RD, Baker SS (2015) Gut microbiome and nonalcoholic fatty liver diseases. Pediatr Res 77(1–2):245

    Article  CAS  PubMed  Google Scholar 

  74. Iimuro Y, Gallucci RM, Luster MI, Kono H, Thurman RG (1997) Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 26(6):1530–1537

    Article  CAS  PubMed  Google Scholar 

  75. Esposito E, Iacono A, Bianco G, Autore G, Cuzzocrea S, Vajro P, Canani RB, Calignano A, Raso GM, Meli R (2009) Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutr 139(5):905–911

    Article  CAS  PubMed  Google Scholar 

  76. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, DeSimone C, Xy S, Diehl AM (2003) Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37(2):343–350

    Article  CAS  PubMed  Google Scholar 

  77. Iacono A, Raso GM, Canani RB, Calignano A, Meli R (2011) Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J Nutr Biochem 22(8):699–711

    Article  CAS  PubMed  Google Scholar 

  78. Craciun S, Balskus EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci 109(52):21307–21312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kobyliak N, Abenavoli L, Mykhalchyshyn G, Kononenko L, Boccuto L, Kyriienko D, Dynnyk O (2018) A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in NAFLD patients: evidence from a randomized clinical trial. J Gastrointestin Liver Dis 27(1):41–49

  80. Manzhalii E, Virchenko O, Falalyeyeva T, Beregova T, Stremmel W (2017) Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: a pilot trial. J Dig Dis 18(12):698–703

  81. Lirussi F, Mastropasqua E, Orando S, Orlando R (2007) Probiotics for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane database of systematic reviews 24(1):CD005165

  82. Loguercio C, Federico A, Tuccillo C, Terracciano F, D'auria MV, De Simone C, Blanco CDV (2005) Beneficial effects of a probiotic VSL# 3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol 39(6):540–543

    Article  PubMed  Google Scholar 

  83. Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale DF, Lenta S, Caropreso M, Vallone G, Meli R (2011) Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr 52(6):740–743

    Article  PubMed  Google Scholar 

  84. Aller R, De Luis D, Izaola O, Conde R, Gonzalez Sagrado M, Primo D, De La Fuente B, Gonzalez J (2011) Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci 15(9):1090–1095

    CAS  PubMed  Google Scholar 

  85. Ahn SB, Jun DW, Kang B-K, Lim JH, Lim S, Chung M-J (2019) Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep 9(1):5688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Loman BR, Hernández-Saavedra D, An R, Rector RS (2018) Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutr Rev 76(11):822–839

    Article  PubMed  Google Scholar 

  87. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491

    Article  PubMed  Google Scholar 

  88. Lim CC, Ferguson LR, Tannock GW (2005) Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol Nutr Food Res 49(6):609–619

    Article  PubMed  Google Scholar 

  89. Petuely F, Kristen G (1949) Changing the intestinal flora of infants.(Short preliminary communication.). Ann Paediatr 172:183–184

    CAS  PubMed  Google Scholar 

  90. Daubioul C, Horsmans Y, Lambert P, Danse E, Delzenne NM (2005) Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur J Clin Nutr 59(5):723

    Article  CAS  PubMed  Google Scholar 

  91. Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacol Ther 130(2):202–212

    Article  CAS  PubMed  Google Scholar 

  92. Fan J-G, Xu Z-J, Wang G-L (2005) Effect of lactulose on establishment of a rat non-alcoholic steatohepatitis model. World J Gastroenterol: WJG 11(32):5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Singh DP, Khare P, Zhu J, Kondepudi KK, Singh J, Baboota RK, Boparai RK, Khardori R, Chopra K, Bishnoi M (2016) A novel cobiotic-based preventive approach against high-fat diet-induced adiposity, nonalcoholic fatty liver and gut derangement in mice. Int J Obes 40(3):487–496

    Article  CAS  Google Scholar 

  94. Micka A, Siepelmeyer A, Holz A, Theis S, Schön C (2017) Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial. Int J Food Sci Nutr 68(1):82–89

    Article  CAS  PubMed  Google Scholar 

  95. Kellow NJ, Coughlan MT, Reid CM (2014) Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr 111(7):1147–1161

    Article  CAS  PubMed  Google Scholar 

  96. Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759

    Article  CAS  PubMed  Google Scholar 

  97. Bomhof MR, Parnell JA, Ramay HR, Crotty P, Rioux KP, Probert CS, Jayakumar S, Raman M, Reimer RA (2019) Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial. Eur J Nutr 58(4):1735–1745

    Article  CAS  PubMed  Google Scholar 

  98. Ma Y-Y, Li L, Yu C-H, Shen Z, Chen L-H, Li Y-M (2013) Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol: WJG 19(40):6911

    Article  PubMed  PubMed Central  Google Scholar 

  99. Van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415

    Article  PubMed  CAS  Google Scholar 

  100. Zhang F, Luo W, Shi Y, Fan Z, Ji G (2012) Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol 107(11):1755

    Article  PubMed  Google Scholar 

  101. Eiseman Á, Silen W, Bascom G, Kauvar A (1958) Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44(5):854–859

    CAS  PubMed  Google Scholar 

  102. Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108(4):478

    Article  CAS  PubMed  Google Scholar 

  103. Konturek P, Haziri D, Brzozowski T, Hess T, Heyman S, Kwiecien S, Konturek S, Koziel J (2015) Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. J Physiol Pharmacol 66(4):483–491

    CAS  PubMed  Google Scholar 

  104. Xu M-Q, Cao H-L, Wang W-Q, Wang S, Cao X-C, Yan F, Wang B-M (2015) Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol: WJG 21(1):102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vrieze A (2012) Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Metabolic effects of transplanting gut microbiota from lean donors to subjects with metabolic syndrome. Gastroenterology 143:913–916

    Article  CAS  PubMed  Google Scholar 

  106. Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, Bado A (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62(12):1787–1794

    Article  PubMed  CAS  Google Scholar 

  107. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhou D, Pan Q, Shen F, H-x C, W-j D, Y-w C, J-g F (2017) Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 7(1):1529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Philips CA, Pande A, Shasthry SM, Jamwal KD, Khillan V, Chandel SS, Kumar G, Sharma MK, Maiwall R, Jindal A (2017) Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol 15(4):600–602

    Article  PubMed  Google Scholar 

  110. Leylabadlo HE, Bialvaei AZ, Samadi Kafil H (2015) Brucellosis in Iran: why not eradicated? Clin Infect Dis 61(10):1629–1630

    Article  PubMed  Google Scholar 

  111. Cohen NA, Maharshak N (2017) Novel indications for fecal microbial transplantation: update and review of the literature. Dig Dis Sci 62(5):1131–1145

    Article  PubMed  Google Scholar 

  112. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L (2016) Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 6:32002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nistal E, Sáenz-de-Miera LE, Ballesteros Pomar M, Sánchez-Campos S, García-Mediavilla MV, Álvarez-Cuenllas B, Linares P, Olcoz JL, Arias-Loste MT, García-Lobo JM (2019) An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. Revista espanola de enfermedades digestivas: organo oficial de la Sociedad Espanola de Patologia Digestiva 111

  114. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP (2013) Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58(1):120–127

    Article  CAS  PubMed  Google Scholar 

  115. Özkul C, Yalınay M, Karakan T, Yılmaz G (2017) Determination of certain bacterial groups in gut microbiota and endotoxin levels in patients with nonalcoholic steatohepatitis. Turk J Gastroenterol 28(5):361–369

    Article  PubMed  Google Scholar 

  116. Sobhonslidsuk A, Chanprasertyothin S, Pongrujikorn T, Kaewduang P, Promson K, Petraksa S, Ongphiphadhanakul B (2018) The association of gut microbiota with nonalcoholic Steatohepatitis in Thais. Biomed Res Int 2018:9340316

  117. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242

    Article  CAS  PubMed  Google Scholar 

  118. Del Chierico F, Nobili V, Vernocchi P, Russo A, Stefanis CD, Gnani D, Furlanello C, Zandonà A, Paci P, Capuani G (2017) Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65(2):451–464

    Article  PubMed  CAS  Google Scholar 

  119. Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11(7):868–875. e863

    Article  CAS  PubMed  Google Scholar 

  120. Li F, Sun G, Wang Z, Wu W, Guo H, Peng L, Wu L, Guo X, Yang Y (2018) Characteristics of fecal microbiota in non-alcoholic fatty liver disease patients. Sci China Life Sci 61(7):770–778

    Article  CAS  PubMed  Google Scholar 

  121. Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Giammaria P, Reali L, Anania F, Nobili V (2014) Randomised clinical trial: the beneficial effects of VSL# 3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 39(11):1276–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wong VW-S, Tse C-H, Lam TT-Y, Wong GL-H, Chim AM-L, Chu WC-W, Yeung DK-W, Law PT-W, Kwan H-S, Yu J (2013) Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis–a longitudinal study. PLoS One 8(4):e62885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, Kyriienko D, Komisarenko I, Dynnyk O (2018) Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clinical study. Minerva Med 109(6):418–428

    Article  PubMed  Google Scholar 

  124. Wang W, Shi LP, Shi L, Xu L (2018) Efficacy of probiotics on the treatment of non-alcoholic fatty liver disease. Zhonghua nei ke za zhi 57(2):101–106

    CAS  PubMed  Google Scholar 

  125. Manzhalii E, Virchenko O, Falalyeyeva T, Beregova T, Stremmel W (2017) Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: A pilot trial. Journal of digestive diseases 18(12):698–703

  126. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R (2017) Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr 64(3):413–417

    Article  CAS  PubMed  Google Scholar 

  127. Sepideh A, Karim P, Hossein A, Leila R, Hamdollah M, Mohammad EG, Mojtaba S, Mohammad S, Ghader G, Seyed Moayed A (2016) Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind randomized clinical trial. J Am Coll Nutr 35(6):500–505

    Article  CAS  PubMed  Google Scholar 

  128. Nabavi S, Rafraf M, Somi M, Homayouni-Rad A, Asghari-Jafarabadi M (2014) Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J Dairy Sci 97(12):7386–7393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghotaslou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This is not necessary, since this is a review.

Informed consent

This is not necessary, since this is a review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimzadeh Leylabadlo, H., Ghotaslou, R., Samadi Kafil, H. et al. Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur J Clin Microbiol Infect Dis 39, 613–627 (2020). https://doi.org/10.1007/s10096-019-03746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03746-1

Keywords

Navigation