Skip to main content

Advertisement

Log in

The Role of Gut Microbiome-Targeted Therapy in Nonalcoholic Fatty Liver Disease

  • Fatty Liver Disease (D Halegoua-DeMarzio, Section Editor)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the role and progress of microbiome-targeting therapies in nonalcoholic fatty liver disease (NAFLD). This review summarizes recent clinical trials of probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) and analyzes the potential clinical impact of reverse dysbiosis in NAFLD.

Recent Findings

Though results might be mixed, the recent randomized clinical trials and systemic reviews indicate probiotics, prebiotics, and synbiotics are promising therapies that improve transaminitis and hepatic steatosis. The scarcity of FMT clinical trials limits the power to conclude the direct impact of FMT on NAFLD.

Summary

Given the rapidly growing prevalence of NAFLD and the lack of effective pharmacological intervention, there is an urgent need for the development of novel therapeutic strategies. Despite the advancements in and promising results of gut microbiome (GM) restoring remedies, further studies are needed to assess their beneficial efficacy, safety, and sustainability to develop novel pharmacologic approaches to NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23. https://doi.org/10.1002/hep.25762.

    Article  PubMed  Google Scholar 

  2. Hashimoto E, Yatsuji S, Tobari M, Taniai M, Torii N, Tokushige K, et al. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J Gastroenterol. 2009;44(Suppl 19):89–95. https://doi.org/10.1007/s00535-008-2262-x.

    Article  PubMed  Google Scholar 

  3. Kodama K, Tokushige K, Hashimoto E, Taniai M, Shiratori K. Hepatic and extrahepatic malignancies in cirrhosis caused by nonalcoholic steatohepatitis and alcoholic liver disease. Alcohol Clin Exp Res. 2013;37(Suppl 1):E247–52. https://doi.org/10.1111/j.1530-0277.2012.01900.x.

    Article  CAS  PubMed  Google Scholar 

  4. Paranagua-Vezozzo DC, Ono SK, Alvarado-Mora MV, Farias AQ, Cunha-Silva M, Franca JI, et al. Epidemiology of HCC in Brazil: incidence and risk factors in a ten-year cohort. Ann Hepatol. 2014;13(4):386–93.

    Article  Google Scholar 

  5. Yatsuji S, Hashimoto E, Tobari M, Taniai M, Tokushige K, Shiratori K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J Gastroenterol Hepatol. 2009;24(2):248–54. https://doi.org/10.1111/j.1440-1746.2008.05640.x.

    Article  CAS  PubMed  Google Scholar 

  6. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431.

    Article  PubMed  Google Scholar 

  7. Sangouni AA, Ghavamzadeh S. A review of synbiotic efficacy in non-alcoholic fatty liver disease as a therapeutic approach. Diabetes Metab Syndr. 2019;13(5):2917–22. https://doi.org/10.1016/j.dsx.2019.07.063.

    Article  PubMed  Google Scholar 

  8. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68(2):280–95. https://doi.org/10.1016/j.jhep.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  9. Hardy T, Oakley F, Anstee QM, Day CP. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol. 2016;11:451–96. https://doi.org/10.1146/annurev-pathol-012615-044224.

    Article  CAS  PubMed  Google Scholar 

  10. Mouzaki M, Loomba R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease: rationale and prospects for therapeutic intervention. Ther Adv Gastroenterol. 2019;12:1756284819858470. https://doi.org/10.1177/1756284819858470.

    Article  CAS  Google Scholar 

  11. Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139(1):323–34 e7. https://doi.org/10.1053/j.gastro.2010.03.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(23):7381–91. https://doi.org/10.3748/wjg.v20.i23.7381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84. https://doi.org/10.1038/ni.1863.

    Article  CAS  PubMed  Google Scholar 

  14. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31. https://doi.org/10.1126/science.1179721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szabo G, Velayudham A, Romics L Jr, Mandrekar P. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of toll-like receptors 2 and 4. Alcohol Clin Exp Res. 2005;29(11 Suppl):140S–5S. https://doi.org/10.1097/01.alc.0000189287.83544.33.

    Article  CAS  PubMed  Google Scholar 

  16. Bajaj JS. The role of microbiota in hepatic encephalopathy. Gut Microbes. 2014;5(3):397–403. https://doi.org/10.4161/gmic.28684.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015;5:8096. https://doi.org/10.1038/srep08096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152(7):1679–94 e3. https://doi.org/10.1053/j.gastro.2017.01.055.

    Article  CAS  PubMed  Google Scholar 

  19. Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50. https://doi.org/10.1016/j.cmet.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  20. •• Xie C, Halegoua-DeMarzio D. Role of probiotics in non-alcoholic fatty liver disease: does gut microbiota matter? Nutrients. 2019;11(11). https://doi.org/10.3390/nu11112837Very important review describing specific challenges and proposed therapeutic strategies including probiotics and synbiotics for NAFLD.

  21. Wright RS, Anderson JW, Bridges SR. Propionate inhibits hepatocyte lipid synthesis. Proc Soc Exp Biol Med. 1990;195(1):26–9. https://doi.org/10.3181/00379727-195-43113.

    Article  CAS  PubMed  Google Scholar 

  22. Demigne C, Morand C, Levrat MA, Besson C, Moundras C, Remesy C. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr. 1995;74(2):209–19. https://doi.org/10.1079/bjn19950124.

    Article  CAS  PubMed  Google Scholar 

  23. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7. https://doi.org/10.1126/science.1223813.

    Article  CAS  PubMed  Google Scholar 

  24. Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 2011;31(9):1285–97. https://doi.org/10.1111/j.1478-3231.2011.02462.x.

    Article  CAS  PubMed  Google Scholar 

  25. Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb. 2017;24(7):660–72. https://doi.org/10.5551/jat.RV17006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73. https://doi.org/10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  27. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, et al. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res. 2008;28(5):321–8. https://doi.org/10.1016/j.nutres.2008.02.012.

    Article  CAS  PubMed  Google Scholar 

  29. Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076. https://doi.org/10.1038/srep19076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng. 2014;118(4):476–81. https://doi.org/10.1016/j.jbiosc.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  31. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6. https://doi.org/10.1073/pnas.0601056103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–24. https://doi.org/10.1016/j.chom.2018.05.003.

    Article  CAS  PubMed  Google Scholar 

  33. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294. https://doi.org/10.1038/s41467-018-05470-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoyles L, Fernandez-Real JM, Federici M, Serino M, Abbott J, Charpentier J, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 2018;24(7):1070–80. https://doi.org/10.1038/s41591-018-0061-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. https://doi.org/10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  36. Boets E, Deroover L, Houben E, Vermeulen K, Gomand SV, Delcour JA, et al. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients. 2015;7(11):8916–29. https://doi.org/10.3390/nu7115440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Canfora EE, van der Beek CM, Jocken JWE, Goossens GH, Holst JJ, Olde Damink SWM, et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci Rep. 2017;7(1):2360. https://doi.org/10.1038/s41598-017-02546-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 2015;22(3):418–26. https://doi.org/10.1016/j.cmet.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  39. Olveira G, Gonzalez-Molero I. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol Nutr. 2016;63(9):482–94. https://doi.org/10.1016/j.endonu.2016.07.006.

    Article  PubMed  Google Scholar 

  40. Degnan FH. The US Food and Drug Administration and probiotics: regulatory categorization. Clin Infect Dis. 2008;46 Suppl 2:S133–6; discussion S44–51. https://doi.org/10.1086/523324.

    Article  PubMed  Google Scholar 

  41. Liang Y, Liang S, Zhang Y, Deng Y, He Y, Chen Y, et al. Oral administration of compound probiotics ameliorates HFD-induced gut microbe dysbiosis and chronic metabolic inflammation via the G protein-coupled receptor 43 in non-alcoholic fatty liver disease rats. Probiotics Antimicrob Proteins. 2019;11(1):175–85. https://doi.org/10.1007/s12602-017-9378-3.

    Article  CAS  PubMed  Google Scholar 

  42. Cortez-Pinto H, Borralho P, Machado J, Lopes MT, Gato IV, Santos AM, et al. Microbiota modulation with synbiotic decreases liver fibrosis in a high fat choline deficient diet mice model of non-alcoholic steatohepatitis (NASH). GE Port J Gastroenterol. 2016;23(3):132–41. https://doi.org/10.1016/j.jpge.2016.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xin J, Zeng D, Wang H, Ni X, Yi D, Pan K, et al. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol. 2014;98(15):6817–29. https://doi.org/10.1007/s00253-014-5752-1.

    Article  CAS  PubMed  Google Scholar 

  44. Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology. 2009;49(3):989–97. https://doi.org/10.1002/hep.22711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37(2):343–50. https://doi.org/10.1053/jhep.2003.50048.

    Article  CAS  PubMed  Google Scholar 

  46. Abdel Monem SM. Probiotic therapy in patients with nonalcoholic steatohepatitis in Zagazig University Hospitals. Euroasian J Hepatogastroenterol. 2017;7(1):101–6. https://doi.org/10.5005/jp-journals-10018-1226.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang W, Shi LP, Shi L, Xu L. Efficacy of probiotics on the treatment of non-alcoholic fatty liver disease. Zhonghua Nei Ke Za Zhi. 2018;57(2):101–6. https://doi.org/10.3760/cma.j.issn.0578-1426.2018.02.004.

    Article  CAS  PubMed  Google Scholar 

  48. Aller R, De Luis DA, Izaola O, Conde R, Gonzalez Sagrado M, Primo D, et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci. 2011;15(9):1090–5.

    CAS  PubMed  Google Scholar 

  49. Nabavi S, Rafraf M, Somi MH, Homayouni-Rad A, Asghari-Jafarabadi M. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease. J Dairy Sci. 2014;97(12):7386–93. https://doi.org/10.3168/jds.2014-8500.

    Article  CAS  PubMed  Google Scholar 

  50. Manzhalii E, Virchenko O, Falalyeyeva T, Beregova T, Stremmel W. Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: a pilot trial. J Dig Dis. 2017;18(12):698–703. https://doi.org/10.1111/1751-2980.12561.

    Article  CAS  PubMed  Google Scholar 

  51. Duseja A, Acharya SK, Mehta M, Chhabra S, Shalimar, Rana S, et al. High potency multistrain probiotic improves liver histology in non-alcoholic fatty liver disease (NAFLD): a randomised, double-blind, proof of concept study. BMJ Open Gastroenterol. 2019;6(1):e000315. https://doi.org/10.1136/bmjgast-2019-000315.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kobyliak N, Abenavoli L, Mykhalchyshyn G, Kononenko L, Boccuto L, Kyriienko D, et al. A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in nafld patients: evidence from a randomized clinical trial. J Gastrointestin Liver Dis. 2018;27(1):41–9. https://doi.org/10.15403/jgld.2014.1121.271.kby.

    Article  PubMed  Google Scholar 

  53. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr. 2017;64(3):413–7. https://doi.org/10.1097/MPG.0000000000001422.

    Article  CAS  PubMed  Google Scholar 

  54. Miccheli A, Capuani G, Marini F, Tomassini A, Pratico G, Ceccarelli S, et al. Urinary (1)H-NMR-based metabolic profiling of children with NAFLD undergoing VSL#3 treatment. Int J Obes. 2015;39(7):1118–25. https://doi.org/10.1038/ijo.2015.40.

    Article  CAS  Google Scholar 

  55. Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale DF, Lenta S, et al. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr. 2011;52(6):740–3. https://doi.org/10.1097/MPG.0b013e31821f9b85.

    Article  PubMed  Google Scholar 

  56. Ahn SB, Jun DW, Kang BK, Lim JH, Lim S, Chung MJ. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep. 2019;9(1):5688. https://doi.org/10.1038/s41598-019-42059-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, et al. Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2014;39(11):1276–85. https://doi.org/10.1111/apt.12758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Loman BR, Hernandez-Saavedra D, An R, Rector RS. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutr Rev. 2018;76(11):822–39. https://doi.org/10.1093/nutrit/nuy031Important meta-analysis to assess the effects of microbiome-targeted therapies in NAFLD.

    Article  PubMed  Google Scholar 

  59. • Khan MY, Mihali AB, Rawala MS, Aslam A, Siddiqui WJ. The promising role of probiotic and synbiotic therapy in aminotransferase levels and inflammatory markers in patients with nonalcoholic fatty liver disease - a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2019;31(6):703–15. https://doi.org/10.1097/MEG.0000000000001371Important meta-analysis to assess the effects of microbiome-targeted therapies in NAFLD.

    Article  CAS  PubMed  Google Scholar 

  60. • Koutnikova H, Genser B, Monteiro-Sepulveda M, Faurie JM, Rizkalla S, Schrezenmeir J, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019;9(3):e017995. https://doi.org/10.1136/bmjopen-2017-017995Important meta-analysis to assess the effects of microbiome-targeted therapies in NAFLD.

    Article  PubMed  PubMed Central  Google Scholar 

  61. • Liu L, Li P, Liu Y, Zhang Y. Efficacy of probiotics and synbiotics in patients with nonalcoholic fatty liver disease: a meta-analysis. Dig Dis Sci. 2019. https://doi.org/10.1007/s10620-019-05699-zImportant meta-analysis to assess the effects of microbiome-targeted therapies in NAFLD.

  62. • Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E, Terrault NA. Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. Am J Clin Nutr. 2019. https://doi.org/10.1093/ajcn/nqz042Important meta-analysis to assess the effects of microbiome-targeted therapies in NAFLD.

  63. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75.

    Article  PubMed  Google Scholar 

  64. • Koopman N, Molinaro A, Nieuwdorp M, Holleboom AG. Review article: can bugs be drugs? The potential of probiotics and prebiotics as treatment for non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2019;50(6):628–39. https://doi.org/10.1111/apt.15416Important review describing the progress and challenges of microbiome-targeted therapy for NAFLD.

    Article  PubMed  Google Scholar 

  65. Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes. 2006;55(5):1484–90. https://doi.org/10.2337/db05-1360.

    Article  CAS  PubMed  Google Scholar 

  66. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(12):691–701. https://doi.org/10.1038/nrgastro.2010.172.

    Article  PubMed  Google Scholar 

  67. Fan JG, Xu ZJ, Wang GL. Effect of lactulose on establishment of a rat non-alcoholic steatohepatitis model. World J Gastroenterol. 2005;11(32):5053–6. https://doi.org/10.3748/wjg.v11.i32.5053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2012;32(5):701–11. https://doi.org/10.1111/j.1478-3231.2011.02730.x.

    Article  CAS  PubMed  Google Scholar 

  69. Kellow NJ, Coughlan MT, Reid CM. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr. 2014;111(7):1147–61. https://doi.org/10.1017/S0007114513003607.

    Article  CAS  PubMed  Google Scholar 

  70. Daubioul CA, Horsmans Y, Lambert P, Danse E, Delzenne NM. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur J Clin Nutr. 2005;59(5):723–6. https://doi.org/10.1038/sj.ejcn.1602127.

    Article  CAS  PubMed  Google Scholar 

  71. Chong CYL, Orr D, Plank LD, Vatanen T, O’Sullivan JM, Murphy R. Randomised double-blind placebo-controlled trial of inulin with metronidazole in non-alcoholic fatty liver disease (NAFLD). Nutrients. 2020;12(4). https://doi.org/10.3390/nu12040937.

  72. Bomhof MR, Parnell JA, Ramay HR, Crotty P, Rioux KP, Probert CS, et al. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial. Eur J Nutr. 2019;58(4):1735–45. https://doi.org/10.1007/s00394-018-1721-2.

    Article  CAS  PubMed  Google Scholar 

  73. Mofidi F, Poustchi H, Yari Z, Nourinayyer B, Merat S, Sharafkhah M, et al. Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: a pilot, randomised, double-blind, placebo-controlled, clinical trial. Br J Nutr. 2017;117(5):662–8. https://doi.org/10.1017/S0007114517000204.

    Article  CAS  PubMed  Google Scholar 

  74. Asgharian A, Askari G, Esmailzade A, Feizi A, Mohammadi V. The effect of symbiotic supplementation on liver enzymes, C-reactive protein and ultrasound findings in patients with non-alcoholic fatty liver disease: a clinical trial. Int J Prev Med. 2016;7:59. https://doi.org/10.4103/2008-7802.178533.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ekhlasi G, Zarrati M, Agah S, Hosseini AF, Hosseini S, Shidfar S, et al. Effects of symbiotic and vitamin E supplementation on blood pressure, nitric oxide and inflammatory factors in non-alcoholic fatty liver disease. EXCLI J. 2017;16:278–90. https://doi.org/10.17179/excli2016-846.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sayari S, Neishaboori H, Jameshorani M. Combined effects of synbiotic and sitagliptin versus sitagliptin alone in patients with nonalcoholic fatty liver disease. Clin Mol Hepatol. 2018;24(3):331–8. https://doi.org/10.3350/cmh.2018.0006.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig Dis Sci. 2012;57(2):545–53. https://doi.org/10.1007/s10620-011-1887-4.

    Article  PubMed  Google Scholar 

  78. Bakhshimoghaddam F, Shateri K, Sina M, Hashemian M, Alizadeh M. Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Nutr. 2018;148(8):1276–84. https://doi.org/10.1093/jn/nxy088.

    Article  PubMed  Google Scholar 

  79. Ferolla SM, Couto CA, Costa-Silva L, Armiliato GN, Pereira CA, Martins FS, et al. Beneficial effect of synbiotic supplementation on hepatic steatosis and anthropometric parameters, but not on gut permeability in a population with nonalcoholic steatohepatitis. Nutrients. 2016;8(7). https://doi.org/10.3390/nu8070397.

  80. Chen HT, Huang HL, Li YQ, Xu HM, Zhou YJ. Therapeutic advances in non-alcoholic fatty liver disease: a microbiota-centered view. World J Gastroenterol. 2020;26(16):1901–11. https://doi.org/10.3748/wjg.v26.i16.1901.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhou D, Pan Q, Shen F, Cao HX, Ding WJ, Chen YW, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep. 2017;7(1):1529. https://doi.org/10.1038/s41598-017-01751-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Craven L, Rahman A, Nair Parvathy S, Beaton M, Silverman J, Qumosani K, et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol. 2020. https://doi.org/10.14309/ajg.0000000000000661.

  83. Khan S, Moore RJ, Stanley D, Chousalkar KK. Gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl Environ Microbiol. 2020;86. https://doi.org/10.1128/AEM.00600-20.

  84. Wilcox MH, McGovern BH, Hecht GA. The efficacy and safety of fecal microbiota transplant for recurrent Clostridium difficile infection: current understanding and gap analysis. Open Forum Infect Dis. 2020;7(5):ofaa114. https://doi.org/10.1093/ofid/ofaa114.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Halegoua-DeMarzio.

Ethics declarations

Conflict of Interest

Chencheng Xie and Dina Halegoua-DeMarzio declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fatty Liver Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Halegoua-DeMarzio, D. The Role of Gut Microbiome-Targeted Therapy in Nonalcoholic Fatty Liver Disease. Curr Hepatology Rep 19, 420–428 (2020). https://doi.org/10.1007/s11901-020-00547-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-020-00547-5

Keywords

Navigation