Skip to main content

Advertisement

Log in

Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

The prevalence of nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) is increasing at an alarming rate. The role of bile acids in the development and progression of NAFLD to NASH and cirrhosis is poorly understood. This study aimed to quantify the bile acid metabolome in healthy subjects and patients with non-cirrhotic NASH under fasting conditions and after a standardized meal.

Methods

Liquid chromatography tandem mass spectroscopy was used to quantify 30 serum and 16 urinary bile acids from 15 healthy volunteers and 7 patients with biopsy-confirmed NASH. Bile acid concentrations were measured at two fasting and four post-prandial time points following a high-fat meal to induce gallbladder contraction and bile acid reabsorption from the intestine.

Results

Patients with NASH had significantly higher total serum bile acid concentrations than healthy subjects under fasting conditions (2.2- to 2.4-fold increase in NASH; NASH 2595–3549 µM and healthy 1171–1458 µM) and at all post-prandial time points (1.7- to 2.2-fold increase in NASH; NASH 4444–5898 µM and healthy 2634–2829 µM). These changes were driven by increased taurine- and glycine-conjugated primary and secondary bile acids. Patients with NASH exhibited greater variability in their fasting and post-prandial bile acid profile.

Conclusions

Results indicate that patients with NASH have higher fasting and post-prandial exposure to bile acids, including the more hydrophobic and cytotoxic secondary species. Increased bile acid exposure may be involved in liver injury and the pathogenesis of NAFLD and NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

CA:

Cholate

CDCA:

Chenodeoxycholate

DCA:

Deoxycholate

LCA:

Lithocholate

HCA:

Hyocholate

MCA:

Muricholate

HDCA:

Hyodeoxycholate

FXR:

Farnesoid X receptor

PXR:

Pregnane X receptor

NAS:

Nonalcoholic fatty liver disease activity score

AUC:

Area under the curve

OPLS-DA:

Orthogonal partial least squares-discriminant analysis

HOMA-IR:

Homeostatic model for assessing insulin resistance

BAAT:

Bile acid coenzyme A:amino acid N-acyltransferase

References

  1. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–1395.

    Article  PubMed  Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–1609.

    Article  PubMed  Google Scholar 

  3. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol. 2009;15:1677–1689.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Neuman MG, French SW, French BA, et al. Alcoholic and non-alcoholic steatohepatitis. Exp Mol Pathol. 2014;97:492–510.

    Article  CAS  PubMed  Google Scholar 

  5. Trottier J, Bialek A, Caron P, Straka RJ, Milkiewicz P, Barbier O. Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS One. 2011;6:e22094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120–127.

    Article  CAS  PubMed  Google Scholar 

  7. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–259.

    Article  CAS  PubMed  Google Scholar 

  8. Hofmann AF. Bile acids: the good, the bad, and the ugly. News Physiol Sci. 1999;14:24–29.

    CAS  PubMed  Google Scholar 

  9. Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol. 2012;130:147–158.

    Article  CAS  PubMed  Google Scholar 

  10. Roberts RE, Glicksman C, Alaghband-Zadeh J, Sherwood RA, Akuji N, le Roux CW. The relationship between postprandial bile acid concentration, GLP-1, PYY and ghrelin. Clin Endocrinol. 2011;74:67–72.

    Article  CAS  Google Scholar 

  11. Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145:574–582.

    Article  CAS  PubMed  Google Scholar 

  12. Bechmann LP, Kocabayoglu P, Sowa JP, et al. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology. 2013;57:1394–1406.

    Article  CAS  PubMed  Google Scholar 

  13. Hardwick RN, Fisher CD, Canet MJ, Scheffer GL, Cherrington NJ. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos Biol Fate Chem. 2011;39:2395–2402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ferslew BC, Johnston CK, Tsakalozou E, et al. Altered morphine glucuronide and bile acid disposition in patients with non-alcoholic steatohepatitis. Clin Pharmacol Ther. 2015;97:419–427.

    Article  CAS  PubMed  Google Scholar 

  15. Jia X, Naito H, Yetti H, et al. Dysregulated bile acid synthesis, metabolism and excretion in a high fat-cholesterol diet-induced fibrotic steatohepatitis in rats. Dig Dis Sci. 2013;58:2212–2222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–1524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kakiyama G, Hylemon PB, Zhou H, et al. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2014;306:G929–G937.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kalhan SC, Guo L, Edmison J, et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metab Clin Exp. 2011;60:404–413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.

    Article  PubMed  Google Scholar 

  20. Stone BG, Ansel HJ, Peterson FJ, Gebhard RL. Gallbladder emptying stimuli in obese and normal-weight subjects. Hepatology. 1992;15:795–798.

    Article  CAS  PubMed  Google Scholar 

  21. Xie G, Wang Y, Wang X, et al. Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS. J Proteome Res. 2015;14:850–859.

    Article  CAS  PubMed  Google Scholar 

  22. Trottier J, Bialek A, Caron P, et al. Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study. Dig Liver Dis. 2012;44:303–310.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res. 2012;53:2231–2241.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology. 2012;56:118–129.

    Article  CAS  PubMed  Google Scholar 

  25. Aranha MM, Cortez-Pinto H, Costa A, et al. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol. 2008;20:519–525.

    Article  CAS  PubMed  Google Scholar 

  26. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174.

    Article  CAS  PubMed  Google Scholar 

  27. Lake AD, Novak P, Shipkova P, et al. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol. 2013;268:132–140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920–3925.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–489.

    Article  CAS  PubMed  Google Scholar 

  31. Faubion WA, Guicciardi ME, Miyoshi H, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Investig. 1999;103:137–145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med. 1998;4:165–178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Spivey JR, Bronk SF, Gores GJ. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J Clin Investig. 1993;92:17–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Investig. 1998;101:2790–2799.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res. 2005;589:47–65.

    Article  CAS  PubMed  Google Scholar 

  36. Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol. 2012;56:1384–1391.

    Article  PubMed  Google Scholar 

  37. Larsson SC, Wolk A. Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. Br J Cancer. 2007;97:1005–1008.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Larsson SC, Wolk A. Obesity and the risk of gallbladder cancer: a meta-analysis. Br J Cancer. 2007;96:1457–1461.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Reddy BS, Narasawa T, Weisburger JH, Wynder EL. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germfree rats. J Natl Cancer Inst. 1976;56:441–442.

    CAS  PubMed  Google Scholar 

  40. Zhang Y, Hagedorn CH, Wang L. Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta. 1812;2011:893–908.

    Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely thank Drs. Nathan D. Pfeifer, Mary F. Paine, and Dhiren R. Thakker for insightful discussions throughout the development, conduct, and analysis of this study. The authors also would like to thank Kevin B. Harris and Dr. Eleftheria Tsakalozou for assistance with study conduct and data management, and Lisa Hardee for assistance performing FibroScan® measurements. Phoenix WinNonlin software was generously provided to the Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, by Certara as a member of the Pharsight Academic Center of Excellence Program. This project was supported in part by the National Institutes of Health, National Center for Advancing Translational Sciences (NCATS), through Award Number 1UL1TR001111, National Institute of General Medical Sciences through Award Number R01 GM041935 [K. L. R. B], an Amgen Predoctoral Fellowship in Pharmacokinetics and Drug Disposition [B. C. F.], and Quintiles Pharmacokinetics/Pharmacodynamics Fellowships [C. K. J.]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, Amgen or Quintiles.

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sidney Barritt IV.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferslew, B.C., Xie, G., Johnston, C.K. et al. Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Dig Dis Sci 60, 3318–3328 (2015). https://doi.org/10.1007/s10620-015-3776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3776-8

Keywords

Navigation