Skip to main content

Advertisement

Log in

Performance of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for rapid identification of streptococci: a review

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been developed as a new type of soft ionization mass spectrometry in recent years. An increasing number of clinical microbiological laboratories consider it as an innovative approach for bacterial identification. This study was undertaken in order to evaluate the use of MALDI-TOF MS for rapid identification of the clinical streptococci. A systematic review was conducted based on a literature search of the Medline and Embase databases. Fixed-effects models based on the P-value and the I-square were used for meta-analysis while considering the possibility of heterogeneity between studies. Statistical analyses were performed by using STATA 11.0. Twenty-seven studies covering 3,540 streptococci were included in our meta-analysis. The MALDI-TOF MS correctly identified the species of 96% (I2 = 92.8, P < 0.1) of the streptococci. The MALDI-TOF MS correctly identified the species of 99% of the Streptococcus pneumoniae (I2 = 85.2%, P < 0.1), 100% of the Streptococcus pyogenes (I2 = 32.8%, P > 0.1), and 100% of Streptococcus agalactiae (I2 = 20.7%, P > 0.2). What’s more, it also had high confidence in other Streptococcus. But the accuracy of bovis needs to be improved. The overall performance of both MALDI-MS systems was different. Notably, the identifying accuracy rate of streptococci by VITEK MS was 98%, compared to 94% by the MALDI biotyper system. Interestingly, when analyzing the incorrect identification of MALDI-TOF MS, 36 out of the 38 strains of Streptococcus mitis/oralis were inaccurately identified as Streptococcus pneumoniae by the MALDI biotyper system. In conclusion, the results of this review indicated that MALDI-TOF MS could be a reliable and rapid method for identification of the streptococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bilecen K, Yaman G, Ciftci U, Laleli YR (2015) Performances and reliability of Bruker Microflex LT and VITEK MS MALDI-TOF mass spectrometry systems for the identification of clinical microorganisms. Biomed Res Int 2015:516410

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171

    Article  CAS  PubMed  Google Scholar 

  4. Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232

    Article  CAS  PubMed  Google Scholar 

  5. Dubois D, Grare M, Prere MF, Segonds C, Marty N, Oswald E (2012) Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. J Clin Microbiol 50:2568–2576

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8:74–82

    Article  CAS  PubMed  Google Scholar 

  7. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nobbs AH, Jenkinson HF, Everett DB (2015) Generic determinants of Streptococcus colonization and infection. Infect Genet Evol 33:361–370

    Article  CAS  PubMed  Google Scholar 

  9. Mitchell TJ (2003) The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol 1:219–230

    Article  CAS  PubMed  Google Scholar 

  10. Andam CP, Hanage WP (2015) Mechanisms of genome evolution of Streptococcus. Infect Genet Evol 33:334–342

    Article  CAS  PubMed  Google Scholar 

  11. Kellogg JA, Bankert DA, Elder CJ, Gibbs JL, Smith MC (2001) Identification of Streptococcus pneumoniae revisited. J Clin Microbiol 39:3373–3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Appelbaum PC, Chaurushiya PS, Jacobs MR, Duffett A (1984) Evaluation of the rapid strep system for species identification of streptococci. J Clin Microbiol 19:588–591

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu B, Ke X, Pan S, Cao Y, Zhuang L, Yu R, Qian H, Liu G, Tong M (2013) Prevalence and trends of aminoglycoside resistance in Shigella worldwide, 1999–2010. J Biomed Res 27(2):103–115

    PubMed  PubMed Central  Google Scholar 

  14. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM (2011) QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  15. Moon HW, Lee SH, Chung HS, Lee M, Lee K (2013) Performance of the Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. J Med Microbiol 62:1301–1306

    Article  CAS  PubMed  Google Scholar 

  16. Cherkaoui A, Emonet S, Fernandez J, Schorderet D, Schrenzel J (2011) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of Beta-hemolytic streptococci. J Clin Microbiol 49:3004–3005

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jamal W, Albert MJ, Rotimi VO (2014) Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol 14:289

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dubois D, Segonds C, Prere MF, Marty N, Oswald E (2013) Identification of clinical Streptococcus pneumoniae isolates among other alpha and nonhemolytic streptococci by use of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin Microbiol 51:1861–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Zhou N, Xu B, Hao H, Kang L, Zheng Y, Jiang Y, Jiang H (2012) Identification and cluster analysis of Streptococcus pyogenes by MALDI-TOF mass spectrometry. PLoS One 7:e47152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neville SA, Lecordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van Hal SJ (2011) Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:2980–2984

    Article  PubMed  PubMed Central  Google Scholar 

  21. López-Fabal MF, Gómez-Garcés JL, López-Hontangas JL, Sanz N, Muñoz C, Regodón M (2015) Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry for identifying respiratory bacterial pathogens: a fast and efficient method. Rev Esp Quimioter 28:242–246

    PubMed  Google Scholar 

  22. Rychert J, Burnham CA, Bythrow M, Garner OB, Ginocchio CC, Jennemann R, Lewinski MA, Manji R, Mochon AB et al (2013) Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol 51: 2225–2231

  23. Angeletti S, Dicuonzo G, Avola A, Crea F, Dedej E, Vailati F, Farina C, De Florio L (2015) Viridans group Streptococci clinical isolates: MALDI-TOF mass spectrometry versus gene sequence-based identification. PLoS One 10(3):e0120502

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jensen CS, Dam-Nielsen C, Arpi M (2015) Matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification of large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G. Infect Dis (Lond) 47:575–579

    Article  CAS  Google Scholar 

  25. Eigner U, Holfelder M, Oberdorfer K, Betz-Wild U, Bertsch D, Fahr AM (2009) Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin Lab 55:289–296

    CAS  PubMed  Google Scholar 

  26. Luo Y, Siu GK, Yeung AS, Chen JH, Ho PL, Leung KW, Tsang JL, Cheng VC, Guo L, Yang J, Ye L, Yam WC (2015) Performance of the VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid bacterial identification in two diagnostic centres in China. J Med Microbiol 64:18–24

    Article  CAS  PubMed  Google Scholar 

  27. Zhou C, Tao L, Hu B, Ma J, Ye X, Huang S, Ma Y, Shan Y (2015) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of beta-hemolytic streptococci. J Thorac Dis 7:591–595

    CAS  PubMed  PubMed Central  Google Scholar 

  28. López Roa P, Sánchez Carrillo C, Marín M, Romero F, Cercenado E, Bouza E (2013) Value of matrix-assisted laser desorption ionization-time of flight for routine identification of viridans group streptococci causing bloodstream infections. Clin Microbiol Infect 19:438–444

    Article  PubMed  Google Scholar 

  29. Davies AP, Reid M, Hadfield SJ, Johnston S, Mikhail J, Harris LG, Jenkinson HF, Berry N, Lewis AM et al (2012) Identification of clinical isolates of alpha-hemolytic streptococci by 16S rRNA gene sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry using MALDI Biotyper, and conventional phenotypic methods: a comparison. J Clin Microbiol 50: 4087–4090

  30. Kärpänoja P, Harju I, Rantakokko-Jalava K, Haanperä M, Sarkkinen H (2014) Evaluation of two matrix-assisted lasers desorption ionization-time of flight mass spectrometry systems for identification of viridans group streptococci. Eur J Clin Microbiol Infect Dis 33:779–788

    Article  PubMed  Google Scholar 

  31. van Prehn J, van Veen SQ, Schelfaut JJ, Wessels E (2016) MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae. Diagn Microbiol Infect Dis 85:9–11

    Article  PubMed  Google Scholar 

  32. Arinto-Garcia R, Pinho MD, Carriço JA, Melo-Cristino J, Ramirez M (2015) Comparing matrix-assisted laser desorption ionization-time of flight mass spectrometry and phenotypic and molecular methods for identification of species within the Streptococcus anginosus group. J Clin Microbiol 53:3580–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Branda JA, Markham RP, Garner CD, Rychert JA, Ferraro MJ (2013) Performance of the Vitek MS v2.0 system in distinguishing Streptococcus pneumoniae from nonpneumococcal species of the Streptococcus mitis group. J Clin Microbiol 51:3079–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Isaksson J, Rasmussen M, Nilson B, Stadler LS, Kurland S, Olaison L, Ek E, Herrmann B (2015) Comparison of species identification of endocarditis associated viridans streptococci using rnpB genotyping and 2 MALDI-TOF systems. Diagn Microbiol Infect Dis 81:240–245

    Article  CAS  PubMed  Google Scholar 

  35. Lee M, Chung HS, Moon HW, Lee SH, Lee K (2015) Comparative evaluation of two matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems, Vitek MS and Microflex LT, for the identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. J Microbiol Methods 113:13–15

    Article  CAS  PubMed  Google Scholar 

  36. Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K (2007) Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45:2392–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O (2012) Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:1313–1325

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deak E, Charlton CL, Bobenchik AM, Miller SA, Pollett S, McHardy IH, Wu MT, Garner OB (2015) Comparison of the Vitek MS and Bruker Microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn Microbiol Infect Dis 81:27–33

    Article  CAS  PubMed  Google Scholar 

  39. Xiao D, Ye C, Zhang H, Kan B, Lu J, Xu J, Jiang X, Zhao F, You Y et al (2014) The construction and evaluation of reference spectra for the identification of human pathogenic microorganisms by MALDI-TOF MS. PLoS One 9:e106312

  40. Zhou C, Hu B, Zhang X, Huang S, Shan Y, Ye X (2014) The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: a comparison with automated microbiology system. J Thorac Dis 6:545–552

    PubMed  PubMed Central  Google Scholar 

  41. Xiao D, Zhao F, Lv M, Zhang H, Zhang Y, Huang H, Su P, Zhang Z, Zhang J (2012) Rapid identification of microorganisms isolated from throat swab specimens of community-acquired pneumonia patients by two MALDI-TOF MS systems. Diagn Microbiol Infect Dis 73:301–307

    Article  CAS  PubMed  Google Scholar 

  42. Sassi M, Arena S, Scaloni A (2015) MALDI-TOF-MS platform for integrated proteomic and peptidomic profiling of milk samples allows rapid detection of food adulterations. J Agric Food Chem 63:6157–6171

    Article  CAS  PubMed  Google Scholar 

  43. van Belk um A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM Jr (2015) Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 12:595–605

    Article  Google Scholar 

  44. Mirande C, Canard I, Buffet Croix Blanche S, Charrier JP, van Belkum A, Welker M, Chatellier S (2015) Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 34:2225–2234

    Article  CAS  PubMed  Google Scholar 

  45. La Scola B, Raoult D (2009) Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One 4:e8041

    Article  PubMed  PubMed Central  Google Scholar 

  46. Altun O, Botero-Kleiven S, Carlsson S, Ullberg M, Özenci V (2015) Rapid identification of bacteria from positive blood culture bottles by MALDI-TOF MS following short-term incubation on solid media. J Med Microbiol 64:1346–1352

    Article  CAS  PubMed  Google Scholar 

  47. Jo SJ, Park KG, Han K, Park DJ, Park YJ (2016) Direct identification and antimicrobial susceptibility testing of bacteria from positive blood culture bottles by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and the Vitek 2 System. Ann Lab Med 36:117–123

    Article  CAS  PubMed  Google Scholar 

  48. Nakasone I, Kinjo T, Yamane N, Kisanuki K, Shiohira CM (2007) Laboratory-based evaluation of the colorimetric VITEK-2 Compact system for species identification and of the Advanced Expert System for detection of antimicrobial resistances: VITEK-2 Compact system identification and antimicrobial susceptibility testing. Diagn Microbiol Infect Dis 58:191–198

    Article  CAS  PubMed  Google Scholar 

  49. Chatzigeorgiou KS, Sergentanis TN, Tsiodras S, Hamodrakas SJ, Bagos PG (2011) Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J Clin Microbiol 49:3284–3291

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was funded by the Chinese National Natural Science Foundation (81471994), Natural Science Foundation of Jiangsu Province (BK20151154), and a youth science and technology innovation team project of Xuzhou Medical University in 2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Ma or B. Gu.

Ethics declarations

Conflicts of interest

None.

Submission funding

No funding.

Ethical Approval

Not required.

Randomized Controlled Trial

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, WT., Qin, TT., Bi, RR. et al. Performance of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for rapid identification of streptococci: a review. Eur J Clin Microbiol Infect Dis 36, 1005–1012 (2017). https://doi.org/10.1007/s10096-016-2879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2879-2

Keywords

Navigation