Skip to main content
Log in

Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been introduced as an identification procedure for bacteria and fungi. The MALDI-TOF MS-based analysis of resistance to β-lactam antibiotics has been applied to detect hydrolysis of carbapenems by different bacterial strains. However, the detection of enzymatic carbapenem degradation by MALDI-TOF MS lacks well-standardized protocols and several methods and models of interpretation using different calculations of ratio-of-peak intensities have been described in the literature. Here, we used faropenem and ertapenem hydrolysis as model compounds. In an attempt to propose a universal protocol, the hydrolysis was regularly monitored during 24 h using well-characterized bacterial strains producing different types of carbapenemases (KPC, IMP, NDM, VIM, and OXA-48). Variable responses and different timing for detectable hydrolysis, depending on the enzyme produced, were observed. KPC degrades its template antibiotics very quickly (15 min for some KPC producers) compared to other types of enzymes (more than 90 min for other enzymes). Prior bacterial lysis was shown to be of no interest in the modulation or optimization of the hydrolytic kinetics. The adequate detection of carbapenem hydrolysis would, therefore, require several MALDI-TOF MS readouts for the timely detection of rapid hydrolysis without missing slow hydrolysis. This enzymatic constraint limits the implementation of a standard protocol in routine microbiology laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Poole K (2001) Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 3:255–264

    CAS  PubMed  Google Scholar 

  3. Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57:1471–1485

    Article  CAS  PubMed  Google Scholar 

  4. Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470

    Article  CAS  PubMed  Google Scholar 

  5. Bush K (2010) Alarming beta-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 13:558–564

    Article  CAS  PubMed  Google Scholar 

  6. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V; European Network on Carbapenemases (2012) Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 18:432–438

    Article  CAS  PubMed  Google Scholar 

  7. Hrabák J, Chudáčková E, Papagiannitsis CC (2014) Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 20:839–853. doi:10.1111/1469-0691.12678

    Article  PubMed  Google Scholar 

  8. Bisiklis A, Papageorgiou F, Frantzidou F, Alexiou-Daniel S (2007) Specific detection of blaVIM and blaIMP metallo-beta-lactamase genes in a single real-time PCR. Clin Microbiol Infect 13:1201–1203

    Article  CAS  PubMed  Google Scholar 

  9. Dortet L, Bréchard L, Cuzon G, Poirel L, Nordmann P (2014) Strategy for rapid detection of carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 58:2441–2445

    Article  PubMed Central  PubMed  Google Scholar 

  10. van Belkum A, Welker M, Erhard M, Chatellier S (2012) Biomedical mass spectrometry in today’s and tomorrow’s clinical microbiology laboratories. J Clin Microbiol 50:1513–1517

    Article  PubMed Central  PubMed  Google Scholar 

  11. Clark AE, Kaleta EJ, Arora A, Wolk DM (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O (2012) Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Clin Microbiol 50:1313–1325

    Article  Google Scholar 

  13. Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T (2011) Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3222–3227

    Article  PubMed Central  PubMed  Google Scholar 

  14. Burckhardt I, Zimmermann S (2011) Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 49:3321–3324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kempf M, Bakour S, Flaudrops C, Berrazeg M, Brunel JM, Drissi M, Mesli E, Touati A, Rolain JM (2012) Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS One 7:e31676. doi:10.1371/journal.pone.0031676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol 50:927–937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hrabák J, Studentová V, Walková R, Zemlicková H, Jakubu V, Chudácková E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerová T (2012) Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:2441–2443

    Article  PubMed Central  PubMed  Google Scholar 

  18. Lee W, Chung HS, Lee Y, Yong D, Jeong SH, Lee K, Chong Y (2013) Comparison of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry assay with conventional methods for detection of IMP-6, VIM-2, NDM-1, SIM-1, KPC-1, OXA-23, and OXA-51 carbapenemase-producing Acinetobacter spp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 77:227–230

    Article  CAS  PubMed  Google Scholar 

  19. Carvalhaes CG, Cayô R, Assis DM, Martins ER, Juliano L, Juliano MA, Gales AC (2013) Detection of SPM-1-producing Pseudomonas aeruginosa and class D β-lactamase-producing Acinetobacter baumannii isolates by use of liquid chromatography–mass spectrometry and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:287–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hoyos-Mallecot Y, Cabrera-Alvargonzalez JJ, Miranda-Casas C, Rojo-Martín MD, Liebana-Martos C, Navarro-Marí JM (2014) MALDI-TOF MS, a useful instrument for differentiating metallo-β-lactamases in Enterobacteriaceae and Pseudomonas spp. Lett Appl Microbiol 58:325–329

    Article  CAS  PubMed  Google Scholar 

  21. Álvarez-Buylla A, Picazo JJ, Culebras E (2013) Optimized method for acinetobacter species carbapenemase detection and identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:1589–1592

    Article  PubMed Central  PubMed  Google Scholar 

  22. Johansson A, Ekelöf J, Giske CG, Sundqvist M (2014) The detection and verification of carbapenemases using ertapenem and matrix assisted laser desorption ionization-time of flight. BMC Microbiol 14:89

    Article  PubMed Central  PubMed  Google Scholar 

  23. Sauget M, Cabrolier N, Manzoni M, Bertrand X, Hocquet D (2014) Rapid, sensitive and specific detection of OXA-48-like-producing Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Microbiol Methods 105:88–91

    Article  CAS  PubMed  Google Scholar 

  24. Knox J, Jadhav S, Sevior D, Agyekum A, Whipp M, Waring L, Iredell J, Palombo E (2014) Phenotypic detection of carbapenemase-producing Enterobacteriaceae by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Carba NP test. J Clin Microbiol 52:4075–4077

    Article  PubMed Central  PubMed  Google Scholar 

  25. Day KM, Pike R, Winstanley TG, Lanyon C, Cummings SP, Raza MW, Woodford N, Perry JD (2013) Use of faropenem as an indicator of carbapenemase activity in the Enterobacteriaceae. J Clin Microbiol 51:1881–1886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hu F, Ahn C, O’Hara JA, Doi Y (2014) Faropenem disks for screening of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 52:3501–3502

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lasserre C, De Saint Martin L, Cuzon G, Bogaerts P, Lamar E, Glupczynski Y, Naas T, Tandé D (2015) Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J Clin Microbiol 53:2163–2171

    Article  CAS  PubMed  Google Scholar 

  28. Dortet L, Bréchard L, Poirel L, Nordmann P (2014) Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. J Med Microbiol 63:772–776

    Article  PubMed  Google Scholar 

  29. Hooff GP, van Kampen JJ, Meesters RJ, van Belkum A, Goessens WH, Luider TM (2012) Characterization of β-lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry. J Proteome Res 11:79–84

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mirande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirande, C., Canard, I., Buffet Croix Blanche, S. et al. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 34, 2225–2234 (2015). https://doi.org/10.1007/s10096-015-2473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2473-z

Keywords

Navigation