Skip to main content

Advertisement

Log in

Reliability of the MicroScan WalkAway PC21 panel in identifying and detecting oxacillin resistance in clinical coagulase-negative staphylococci strains

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the reliability of the MicroScan WalkAway PosCombo21 (PC21) system for the identification of coagulase-negative staphylococci (CNS) strains and the detection of oxacillin resistance. Using molecular and phenotypic methods, 196 clinical strains were evaluated. The automated system demonstrated 100 % reliability for the identification of the clinical strains Staphylococcus haemolyticus, Staphylococcus hominis and Staphylococcus cohnii; 98.03 % reliability for the identification of Staphylococcus epidermidis; 70 % reliability for the identification of Staphylococcus lugdunensis; 40 % reliability for the identification of Staphylococcus warneri; and 28.57 % reliability for the identification of Staphylococcus capitis, but no reliability for the identification of Staphylococcus auricularis, Staphylococcus simulans and Staphylococcus xylosus. We concluded that the automated system provides accurate results for the more common CNS species but often fails to accurately identify less prevalent species. For the detection of oxacillin resistance, the automated system showed 100 % specificity and 90.22 % sensitivity. Thus, the PC21 panel detects oxacillin-resistant strains, but is limited by the heteroresistance that is observed when using most phenotypic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beekmann SE, Diekema DJ, Chapin KC, Doern GV (2003) Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J Clin Microbiol 41:3119–3125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Layer F, Ghebremedhin B, Moder KA, Konig W, Konig B (2006) Comparative study using various methods for identification of Staphylococcus species in clinical specimens. J Clin Microbiol 44:2824–2830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Otto M (2004) Virulence factors of the coagulase-negative staphylococci. Front Biosci 9:841–863

    Article  CAS  PubMed  Google Scholar 

  4. Sader HS, Gales AC, Pfaller MA, Mendes RE, Zoccoli C, Brth A, Jones RN (2001) Pathogen frequency and resistance patterns in Brazilian hospitals: summary of results from three years of the SENTRY Antimicrobial Surveillance Program. Braz J Infect Dis 5:200–214

    CAS  PubMed  Google Scholar 

  5. Heikens E, Fleer A, Paatrw A, Florijn A, Fluit AC (2005) Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J Clin Microbiol 43:2286–2290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cunha ML, Sinzato YK, Silveira LV (2004) Comparison of methods for the identification of coagulase-negative staphylococci. Mem Inst Oswaldo Cruz 99:855–860

    Article  Google Scholar 

  7. Kloos WE, Schleifer KH (1975) Simplified scheme for routine identification of human Staphylococcus species. J Clin Microbiol 1:82–88

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Bannerman TL, Peacock SJ (2003) Staphylococcus, Micrococcus, and other catalase-positive cocci that grown aerobically. In: Murray PR, Barron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology, 8th edn. ASM Press, Washington, DC, pp 384–404

    Google Scholar 

  9. Carbonnelle E, Beretti JL, Cottyn S, Quesne G, Berche P, Nassif X, Ferroni A (2007) Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45:2156–2161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jin WY, Jang SJ, Lee MJ, Park G, Kim MJ, Kook JK, Kim DM, Moon DS, Park YJ (2011) Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn Microbiol Infect Dis 70:442–447

    Article  PubMed  Google Scholar 

  11. Barros EM, Iório NLP, Bastos MCF, Santos KRN, Giambiagi-deMarval M (2007) Species-level identification of clinical staphylococcal isolates based on polymerase chain reaction-restriction fragment length polymorphism analysis of a partial groEL gene sequence. Diagn Microbiol Infect Dis 59:251–257

    Article  CAS  PubMed  Google Scholar 

  12. Schuenck RP, Pereira EM, Iorio NL, Santos KRN (2008) Multiplex PCR assay to identify methicillin-resistant Staphylococcus haemolyticus. FEMS Immunol Med Microbiol 52:431–435

    Article  CAS  PubMed  Google Scholar 

  13. Santos OC, Laport MS, Teixeira LM, Giambiagi-deMarval M, Iório NLP, Santos KRN (2009) Reliable identification of clinically prevalent species and subspecies of staphylococci by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. Diagn Microbiol Infect Dis 64:1–5

    Article  CAS  PubMed  Google Scholar 

  14. Tomasz A, Nachman S, Leaf H (1991) Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother 35:124–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Martins A, Cunha MLRS (2007) Methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci: epidemiological and molecular aspects. Microbiol Immunol 51:787–795

    Article  CAS  PubMed  Google Scholar 

  16. Ramotar K, Bobrowska M, Jessamine P, Toye B (1998) Detection of methicillin resistance in coagulase-negative staphylococci initially reported as methicillin susceptible using automated methods. Diagn Microbiol Infect Dis 30:267–273

    Article  CAS  PubMed  Google Scholar 

  17. MacFaddin JF (1977) Biochemical tests for identification of medical bacteria. Waverly Press, Baltimore

    Google Scholar 

  18. Monsen T, Rönnmark M, Olofsson C, Wiström J (1998) An inexpensive and reliable method for routine identification of staphylococcal species. Eur J Clin Microbiol Infect Dis 17:327–335

    CAS  PubMed  Google Scholar 

  19. Laport M, deCastro AC, Villardo A, Lemos JA, Bastos MC, Giambiagi-deMarval M (2001) Expression of the major heat shock proteins DnaK and GroEL in Streptococcus pyogenes: a comparison to Enterococcus faecalis and Staphylococcus aureus. Curr Microbiol 42:264–268

    CAS  PubMed  Google Scholar 

  20. Clinical Laboratory Standard Institute (2007) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard: M7-A6. NCCLS, Wayne, Pennsylvania

  21. Santos KRN, Teixeira LM, Leal GS, Fonseca LS, Gontijo-Filho PP (1999) DNA typing of methicillin-resistant Staphylococcus aureus: isolates and factors associated with nosocomial acquisition in two Brazilian university hospitals. J Med Microbiol 48:17–23

    Article  CAS  PubMed  Google Scholar 

  22. Barg NL, Harris T (1997) Toxin-mediated syndromes. In: Crossley KB, Archer GL (eds) The staphylococci in human disease. Churchill Livingstone, New York, pp 527–543

    Google Scholar 

  23. Shuttleworth R, Behme RJ, McNabb A, Colby WD (1997) Human Isolates of Staphylococcus caprae: association with bone and joint infections. J Clin Microbiol 35:2537–2541

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Jarlov JO (1999) Phenotypic characteristics of coagulase-negative staphylococci: typing and antibiotic susceptibility. Acta Pathol Microbiol Immunol Scand 107:1S–42S

    Article  Google Scholar 

  25. Drancourt M, Raoult D (2002) rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol 40:1333–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Iório NLP, Ferreira RBR, Schuenck RP, Malvar KL, Pereira AB, Nunes APF, Bastos CCR, Santos KRN (2007) Simplified and reliable scheme for species-level identification of clinical isolates of Staphylococcus. J Clin Microbiol 45:2564–2569

    Article  PubMed Central  PubMed  Google Scholar 

  27. Saa AI, Tinajas A, Barbeyto L, Rodriguez LA (1999) Evaluation of the MicroScan System for identification of staphylococci. J Basic Microbiol 39:373–376

    Article  CAS  PubMed  Google Scholar 

  28. Lee TF, Lee H, Chen CM, Du SH, Chen YC, Hsu CC, Chung MY, Teng SH, Teng LJ, Hsueh PR (2013) Comparison of the accuracy of matrix-assisted laser desorption ionization—time of flight mass spectrometry system with that of other commercial identification systems at identifying Staphylococcus saprophyticus in urine. J Clin Microbiol 51:1563–1566

    Article  PubMed Central  PubMed  Google Scholar 

  29. Swenson JM, Williams PP, Killgore G, O’Hara CM, Tenover FC (2001) Performance of eight methods, including two new rapid methods, for detection of oxacillin resistance in a challenge set of Staphylococcus aureus organisms. J Clin Microbiol 39:3785–3788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Farrell DJ (1997) The reliability of MicroScan conventional and rapid panels to identify Staphylococcus aureus and detect methicillin resistance: an evaluation using the tube coagulase test and mecA PCR. Pathology 29:406–410

    Article  CAS  PubMed  Google Scholar 

  31. Matthews PR, Stewart PR (1984) Resistance heterogeneity in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 22:161–166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Olinda C. S. Santos for her helpful assistance. This study was supported by Brazilian grants to Marcia Giambiagi-deMarval from: the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES) and the Programa de Núcleos de Excelência (PRONEX). We thank Orlando dos Santos, in memoriam, for his technical assistance.

Conflict of interest

The authors have no financial relationship with the organisations that sponsored this research, and they declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giambiagi-deMarval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olendzki, A.N., Barros, E.M., Laport, M.S. et al. Reliability of the MicroScan WalkAway PC21 panel in identifying and detecting oxacillin resistance in clinical coagulase-negative staphylococci strains. Eur J Clin Microbiol Infect Dis 33, 29–33 (2014). https://doi.org/10.1007/s10096-013-1923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1923-8

Keywords

Navigation