Skip to main content

Advertisement

Log in

Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Simultaneous Detection of mecA, nuc, and femB by Loop-Mediated Isothermal Amplification (LAMP)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a rapid detection assay to identify methicillin-resistant Staphylococcus aureus by simultaneous testing for the mecA, nuc, and femB genes using the loop-mediated isothermal amplification (LAMP) method. LAMP primers were designed using online bio-software (http://primerexplorer.jp/e/), and amplification reactions were performed in an isothermal temperature bath. The products were then examined using 2% agarose gel electrophoresis. MecA, nuc, and femB were confirmed by triplex TaqMan real-time PCR. For better naked-eye inspection of the reaction result, hydroxy naphthol blue (HNB) was added to the amplification system. Within 60 min, LAMP successfully amplified the genes of interest under isothermal conditions at 63 °C. The results of 2% gel electrophoresis indicated that when the Mg2+ concentration in the reaction system was 6 μmol, the amplification of the mecA gene was relatively good, while the amplification of the nuc and femB genes was better at an Mg2+ concentration of 8 μmol. Obvious color differences were observed by adding 1 μL (3.75 mM) of HNB into 25 μL reaction system. The LAMP assay was applied to 128 isolates cases of methicillin-resistant Staphylococcus aureus, which were separated from the daily specimens and identified by Vitek microbial identification instruments. The results were identical for both LAMP and PCR. LAMP offers an alternative detection assay for mecA, nuc, and femB and is faster than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Addicks JP, Gotting M, Jensen AM et al (2010) MRSA—current aspects of resistance, pathology, epidemiology and therapy. Versicherungsmedizin 62:183–188

    PubMed  Google Scholar 

  2. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641. doi:10.1038/nrmicro2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davis MF, Peterson AE, Julian KG et al (2013) Household risk factors for colonization with multidrug-resistant Staphylococcus aureus isolates. PLoS ONE 8:e54733. doi:10.1371/journal.pone.0054733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fishovitz J, Hermoso JA, Chang M et al (2014) Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life 66:572–577. doi:10.1002/iub.1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. French GL (2009) Methods for screening for methicillin-resistant Staphylococcus aureus carriage. Clin Microbiol Infect 15(Suppl 7):10–16. doi:10.1111/j.1469-0691.2009.03092.x

    Article  CAS  PubMed  Google Scholar 

  6. Geiger K, Brown J (2013) Rapid testing for methicillin-resistant Staphylococcus aureus: implications for antimicrobial stewardship. Am J Health Syst Pharm 70:335–342. doi:10.2146/ajhp110724

    Article  PubMed  Google Scholar 

  7. Goto M, Honda E, Ogura A et al (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 46:167–172. doi:10.2144/000113072

    Article  CAS  PubMed  Google Scholar 

  8. Hirvonen JJ (2014) The use of molecular methods for the detection and identification of methicillin-resistant Staphylococcus aureus. Biomark Med 8:1115–1125. doi:10.2217/bmm.14.60

    Article  CAS  PubMed  Google Scholar 

  9. Kim HJ, Kim HS, Lee JM et al (2016) Rapid detection of Pseudomonas aeruginosa and Acinetobacter baumannii Harboring bla(VIM-2), bla(IMP-1) and bla(OXA-23) genes by using loop-mediated isothermal amplification methods. Ann Lab Med 36:15–22. doi:10.3343/alm.2016.36.1.15

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi N, Wu H, Kojima K et al (1994) Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction. Epidemiol Infect 113:259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu ZZ, Xiong YL, Fan XJ et al (2011) The correlation between expression level of femB and resistance phenotype of methicillin-resistant Staphylococcus aureus (MRSA). Sichuan Da Xue Xue Bao Yi Xue Ban 42:661–665

    CAS  PubMed  Google Scholar 

  12. Montazeri EA, Khosravi AD, Jolodar A et al (2015) Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR. Burns 41:590–594. doi:10.1016/j.burns.2014.08.018

    Article  PubMed  Google Scholar 

  13. Mori Y, Kanda H, Notomi T (2013) Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J Infect Chemother 19:404–411. doi:10.1007/s10156-013-0590-0

    Article  CAS  PubMed  Google Scholar 

  14. Napolitano LM (2008) Early appropriate parenteral antimicrobial treatment of complicated skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus. Surg Infect 9(Suppl 1):s17–s27. doi:10.1089/sur.2008.063.supp (Larchmt)

    Article  Google Scholar 

  15. Navarro MB, Huttner B, Harbarth S (2008) Methicillin-resistant Staphylococcus aureus control in the 21st century: beyond the acute care hospital. Curr Opin Infect Dis 21:372–379. doi:10.1097/QCO.0b013e3283013add

    Article  CAS  PubMed  Google Scholar 

  16. Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Notomi T, Mori Y, Tomita N et al (2015) Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 53:1–5. doi:10.1007/s12275-015-4656-9

    Article  CAS  PubMed  Google Scholar 

  18. Oteo J, Belen Aracil M (2015) Molecular characterization of resistance mechanisms: methicillin resistance Staphylococcus aureus, extended spectrum beta-lactamases and carbapenemases. Enferm Infecc Microbiol Clin 33(Suppl 2):27–33. doi:10.1016/S0213-005X(15)30012-4

    Article  PubMed  Google Scholar 

  19. Palavecino EL (2014) Rapid methods for detection of MRSA in clinical specimens. Methods Mol Biol 1085:71–83. doi:10.1007/978-1-62703-664-1_3

    Article  CAS  PubMed  Google Scholar 

  20. Pozzi C, Waters EM, Rudkin JK et al (2012) Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog 8:e1002626. doi:10.1371/journal.ppat.1002626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sturenburg E (2009) Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations. Ger Med Sci 7:Doc06. doi:10.3205/000065

    PubMed  PubMed Central  Google Scholar 

  22. Su J, Liu X, Cui H et al (2014) Rapid and simple detection of methicillin-resistance Staphylococcus aureus by orfX loop-mediated isothermal amplification assay. BMC Biotechnol 14:8. doi:10.1186/1472-6750-14-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sudhaharan S, Vanjari L, Mamidi N et al (2015) Evaluation of LAMP assay using phenotypic tests and conventional PCR for detection of nuc and mecA genes among clinical isolates of Staphylococcus spp. J Clin Diagn Res 9:DC06–09. doi:10.7860/JCDR/2015/13962.6315

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tacconelli E, De Angelis G, de Waure C et al (2009) Rapid screening tests for meticillin-resistant Staphylococcus aureus at hospital admission: systematic review and meta-analysis. Lancet Infect Dis 9:546–554. doi:10.1016/S1473-3099(09)70150-1

    Article  PubMed  Google Scholar 

  25. Towner KJ, Talbot DC, Curran R et al (1998) Development and evaluation of a PCR-based immunoassay for the rapid detection of methicillin-resistant Staphylococcus aureus. J Med Microbiol 47:607–613

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Wang Y, Luo L et al (2015) Rapid and sensitive detection of Shigella spp. and Salmonella spp. by multiple endonuclease restriction real-time loop-mediated isothermal amplification technique. Front Microbiol 6:1400. doi:10.3389/fmicb.2015.01400

    PubMed  PubMed Central  Google Scholar 

  27. Wu R, Liu X, Guo B et al (2014) Development of double loop-mediated isothermal amplification to detect Listeria monocytogenes in food. Curr Microbiol 69:839–845. doi:10.1007/s00284-014-0661-1

    Article  CAS  PubMed  Google Scholar 

  28. Zervos M (2008) Treatment options for uncomplicated community-acquired skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus: oral antimicrobial agents. Surg Infect 9(Suppl 1):s29–s34. doi:10.1089/sur.2008.065.supp (Larchmt)

    Article  Google Scholar 

  29. Zhang H, Feng J, Xue R et al (2014) Loop-mediated isothermal amplification assays for detecting Yersinia pseudotuberculosis in milk powders. J Food Sci 79:M967–M971. doi:10.1111/1750-3841.12436

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation (No. 81401311) and the Capital Characteristic Clinical Application Research (WU JIEPING Foundation No. Z141107006614009). This work was also supported by the Navy General Hospital Innovation Cultivation Foundation (No. CXPY201412).

Author’s Contributions

CQY and ZQY conceived the study, collected and analyzed the data, and drafted the manuscript. GJW and LYJ conceived the project and provided technical support for data collection and analysis. CCG conceived the study and revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changguo Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no competing interests.

Ethical Approval

The subjects of this work are bacteria that were separated and purified from clinical samples. This article does not contain any studies with human or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhao, Q., Guo, J. et al. Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Using Simultaneous Detection of mecA, nuc, and femB by Loop-Mediated Isothermal Amplification (LAMP). Curr Microbiol 74, 965–971 (2017). https://doi.org/10.1007/s00284-017-1274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1274-2

Navigation