Skip to main content

Advertisement

Log in

Abstract

The antifungal activity of synthetic, nonchemotherapeutic compounds, antineoplastic agents and antibacterial drugs, such as sulphonamides, has been known since the early 20th century (1932). In this context, the term "nonantifungal" is taken to include a variety of compounds that are employed in the management of pathological conditions of nonfungal infectious etiology but have been shown to exhibit broad-spectrum antifungal activity. In this review, the antifungal properties of compounds such as chlorpromazine, proton pump inhibitors, antiarrhythmic agents, cholesterol-lowering agents, antineoplastic and immunosuppressive agents, antiparasitic drugs and antibiotics are described. Since fungi are eukaryotic cells, they share many pathways with human cells, thus increasing the probability of antifungal activity of "nonfungal drugs". The potential of these drugs for treatment of fungal infections has been investigated sporadically using the drugs alone or in combination with "classic" antifungal agents. A review of the literature, supplemented with a number of more recent investigations, suggests that some of these compounds enhance the activity of conventional antifungal agents, eliminate natural resistance to specific antifungal drugs (reversal of resistance) or exhibit strong activity against certain fungal strains in vitro and in animal models. The role of these agents in the epidemiology and in the clinical manifestations of fungal infections and the potential of certain drugs for treatment of invasive fungal infections require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Kullberg BJ, Oude Lashof AM (2002) Epidemiology of opportunistic invasive mycoses. Eur J Med Res 7:183–191

    CAS  PubMed  Google Scholar 

  2. Vanden Bossche H, Warnock DW, Dupont B, Kerridge D, Sen Gupta S, Improvisi L, Marichal P, Odds FC, Provost F, Ronin O (1994) Mechanisms and clinical impact of antifungal drug resistance. J Med Vet Mycol 32:189–202

    Google Scholar 

  3. Fleming RV, Walsh TJ, Anaissie EJ (2002) Emerging and less common fungal pathogens. Infect Dis Clin North Am 16:915–933

    PubMed  Google Scholar 

  4. Wood NC, Nugent KM (1985) Inhibitory effects of chlorpromazine on Candida species. Antimicrob Agents Chemother 27:692–694

    CAS  PubMed  Google Scholar 

  5. Eilam Y, Polacheck I, Ben-Gigi G, Chernichovsky D (1987) Activity of phenothiazines against medically important yeasts. Antimicrob Agents Chemother 31:834–836

    CAS  PubMed  Google Scholar 

  6. Krajewska-Kulak E, Niczyporuk WW (1993) Anticandidal activity of flunarizine. Mater Med Pol 25:143–144

    CAS  PubMed  Google Scholar 

  7. Krajewska-Kulak E, Niczyporuk W (1993) Effects of the combination of ketoconazole and calcium channel antagonists against Candida albicans in vitro. Arzneimittelforschung 43:782–783

    CAS  PubMed  Google Scholar 

  8. Rodrigues AA, Pina-Vaz C, Mardh PA, Martinez-de-Oliveira J, Freitas-da-Fonseca A (2000) Inhibition of germ tube formation by Candida albicans by local anesthetics: an effect related to ionic channel blockade. Curr Microbiol 40:145–148

    Article  CAS  PubMed  Google Scholar 

  9. Pina-Vaz C, Rodrigues AG, Sansonetty F, Martinez-De-Oliveira J, Fonseca AF, Mardh PA (2000) Antifungal activity of local anesthetics against Candida species. Infect Dis Obstet Gynecol 8:124–137

    Article  CAS  PubMed  Google Scholar 

  10. Levy R, Dana R, Gold B, Alkan M, Schlaeffer F (1991) Influence of calcium channel blockers on polymorphonuclear and monocyte bactericidal and fungicidal activity. Isr J Med Sci 27:301–306

    CAS  PubMed  Google Scholar 

  11. Hanel H, Kirsch R, Schmidts HL, Kottmann H (1995) New systematically active antimycotics from the beta-blocker category. Mycoses 38:251–264

    CAS  PubMed  Google Scholar 

  12. Perlin DS, Seto-Young D, Monk BC (1997) The plasma membrane H(+)-ATPase of fungi. A candidate drug target? Ann NY Acad Sci 834:609–617

    Google Scholar 

  13. Seto-Young D, Monk B, Mason AB, Perlin DS (1997) Exploring an antifungal target in the plasma membrane H(+)-ATPase of fungi. Biochim Biophys Acta 1326:249–256

    Article  CAS  PubMed  Google Scholar 

  14. Monk BC, Perlin DS (1994) Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol 20:209–223

    CAS  PubMed  Google Scholar 

  15. Soteropoulos P, Vaz T, Santangelo R, Paderu P, Huang DY, Tamas MJ, Perlin DS (2000) Molecular characterization of the plasma membrane H(+)-ATPase, an antifungal target in Cryptococcus neoformans. Antimicrob Agents Chemother 44:2349–2355

    Article  CAS  PubMed  Google Scholar 

  16. Monk BC, Mason AB, Abramochkin G, Haber JE, Seto-Young D, Perlin DS (1995) The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochim Biophys Acta 1239:81–90

    Article  CAS  PubMed  Google Scholar 

  17. Biswas SK, Yokoyama K, Kamei K, Nishimura K, Miyaji M (2001) Inhibition of hyphal growth of Candida albicans by activated lansoprazole, a novel benzimidazole proton pump inhibitor. Med Mycol 39:283–285

    CAS  PubMed  Google Scholar 

  18. Ben-Josef AM, Manavathu EK, Platt D, Sobel JD (2000) Proton translocating ATPase mediated fungicidal activity of a novel complex carbohydrate: CAN-296. Int J Antimicrob Agents 13:287–295

    Article  CAS  PubMed  Google Scholar 

  19. Manavathu EK, Dimmock JR, Vashishtha SC, Chandrasekar PH (2001) Inhibition of H(+)-ATPase-mediated proton pumping in Cryptococcus neoformans by a novel conjugated styryl ketone. J Antimicrob Chemother 47:491–494

    Article  CAS  PubMed  Google Scholar 

  20. Manavathu EK, Dimmock JR, Vashishtha SC, Chandrasekar PH (1999) Proton-pumping-ATPase-targeted antifungal activity of a novel conjugated styryl ketone. Antimicrob Agents Chemother 43:2950–2959

    CAS  PubMed  Google Scholar 

  21. Manavathu EK, Dimmock JR, Vashishtha SC, Cutright J, Chandrasekar PH (1998) In-vitro and in-vivo susceptibility ofAspergillus fumigatus to a novel conjugated styryl ketone. J Antimicrob Chemother 42:585–590

    Article  CAS  PubMed  Google Scholar 

  22. Sarachek A, Henderson L, Wilkens WE (1992) Evaluation of the genotoxic spectrum of cisplatin for Candida albicans. Microbios 72:183–201

    CAS  PubMed  Google Scholar 

  23. Sarachek A, Henderson LA (1991) Modification of responses of Candida albicans to cisplatin by membrane-damaging antimycotic agents. Mycoses 34:177–182

    CAS  PubMed  Google Scholar 

  24. Chandrasekar K, Shyla JH, Malathi R (2000) Can antitumor platinum compounds be effective against Candida albicans? A screening assay using disk diffusion method. J Med Microbiol 38:3905

    CAS  Google Scholar 

  25. Watanabe T, Takano M, Ogasawara A, Mikami T, Kobayashi T, Watabe M, Matsumoto T (2000) Anti-Candida activity of a new platinum derivative. Antimicrob Agents Chemother 44:2853–2854

    Article  CAS  PubMed  Google Scholar 

  26. Ghannoum MA, Abu-Elteen KH, Motawy MS, Abu-Hatab MA, Ibrahim AS, Criddle RS (1990) Combinations of antifungal and antineoplastic drugs with interactive effects on inhibition of yeast growth. Chemotherapy 36:308–320

    CAS  PubMed  Google Scholar 

  27. Graybill JR, Bocanegra R, Fothergill A, Rinaldi MG (1996) Bleomycin therapy of experimental disseminated candidiasis in mice. Antimicrob Agents Chemother 40:816–818

    CAS  PubMed  Google Scholar 

  28. Georgopapadakou NH (1998) Antifungals: mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol 1:547–557

    Article  CAS  PubMed  Google Scholar 

  29. Georgopapadakou NH, Walsh TJ (1994) Human mycoses: drugs and targets for emerging pathogens. Science 264:371–373

    PubMed  Google Scholar 

  30. High KP (1994) The antimicrobial activities of cyclosporine, FK506, and rapamycin. Transplantation 57:1689–1700

    CAS  PubMed  Google Scholar 

  31. Cruz MC, Fox DS, Heitman J (2001) Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. EMBO J 20:1020–1032

    Article  CAS  PubMed  Google Scholar 

  32. Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16:2576–2589

    Google Scholar 

  33. Kirkland TN, Fierer J (1983) Cyclosporin A inhibitsCoccidioides immitis in vitro and in vivo. Antimicrob Agents Chemother 24:9221–9222

    Google Scholar 

  34. Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VF, Movva NR, Perfect JR, Cardenas ME, Heitman J (2000) Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemother 44:143–149

    CAS  PubMed  Google Scholar 

  35. Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC (1998) Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 42:1819–1830

    CAS  PubMed  Google Scholar 

  36. Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39:2378–2386

    CAS  PubMed  Google Scholar 

  37. Vanden Bossche H, Marichal P, Odds FC (1994) Molecular mechanisms of drug resistance in fungi. Trends Microbiol 2:393–400

    PubMed  Google Scholar 

  38. Leonard PJ, Rathod PK, Golin J (1994) Loss of function mutation in the yeast multiple drug resistance gene PDR5 causes a reduction in chloramphenicol efflux. Antimicrob Agents Chemother 38:2492–2494

    CAS  PubMed  Google Scholar 

  39. Maesaki S, Marichal P, Hossain MA, Sanglard D, Vanden Bossche H, Kohno S (1998) Synergic effects of tacrolimus and azole antifungal agents against azole-resistant Candida albicans strains. J Antimicrob Chemother 42:747–753

    Article  CAS  PubMed  Google Scholar 

  40. Marchetti O, Moreillon P, Glauser MP, Bille J, Sanglard D (2000) Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob Agents Chemother 44:2373–2381

    Article  CAS  PubMed  Google Scholar 

  41. Perfect JR, Durack DT (1985) Effects of cyclosporine in experimental cryptococcal meningitis. Infect Immun 50:22–26

    CAS  PubMed  Google Scholar 

  42. High KP, Washburn RG (1997) Invasive aspergillosis in mice immunosuppressed with cyclosporin A, tacrolimus (FK506), or sirolimus (rapamycin). J Infect Dis 175:222–225

    CAS  PubMed  Google Scholar 

  43. Marchetti O, Entenza JM, Sanglard D, Bille J, Glauser MP, Moreillon P (2000) Fluconazole plus cyclosporine: a fungicidal combination effective against experimental endocarditis due to Candida albicans. Antimicrob Agents Chemother 44:2932–2938

    Article  CAS  PubMed  Google Scholar 

  44. Husain S, Wagener MM, Singh N (2001) Cryptococcus neoformans infection in organ transplant recipients: variables influencing clinical characteristics and outcome. Emerg Infect Dis 7:375–381

    CAS  PubMed  Google Scholar 

  45. Husain S, John G, Singh N (2002) Changing spectrum of Cryptococcus neoformans infection in organ transplant recipients in the era of calcineurin-inhibitor based immunosuppression (tacrolimus and cyclosporin A, CsA). In: Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, Abstract no. M-884

  46. Sinh N, Alexander B, Gupta KL (2002) Characteristics and outcome of Cryptococcus neoformans infection of the central nervous system in organ transplant recipients; A prospective, multicenter study. In: Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotheraphy, Abstract no. M-885

  47. Torre-Cisneros J, Manez R, Kusne S, Alessiani M, Martin M, Starzl TE (1991) The spectrum of aspergillosis in liver transplant patients: comparison of FK 506 and cyclosporine immunosuppression. Transplant Proc 23:3040–3041

    CAS  PubMed  Google Scholar 

  48. Mandell G, Petri W (2000) Antimicrobial agents (continued): sulfonamides, trimethoprim-sulfamethoxazole, quinolones, and agent for urinary tract infections. In: Gerald M, Mandell M, John M, Bennett E, Raphael Dolin M (eds) Principles and practice of infectious diseases. Churchill Livingstone, Philadelphia, pp 1057–1065

  49. Zinner S, Mayer K (2000) Sulfonamides and trimethoprim. In: Gerald M, Mandell M, John M, Bennett E, Raphael Dolin M (eds) Mandell, Douglas and Bennett's principles and practice of infectious diseases. Churchill Livingstone, Philadelphia, pp 394–401

  50. Stevens DA, Vo PT (1982) Synergistic interaction of trimethoprim and sulfamethoxazole on Paracoccidioides brasiliensis. Antimicrob Agents Chemother 21:852–854

    CAS  PubMed  Google Scholar 

  51. Shikanai-Yasuda MA, Benard G, Higaki Y, Del Negro GM, Hoo S, Vaccari EH, Gryschek RC, Segurado AA, Barone AA, Andrade DR (2002) Randomized trial with itraconazole, ketoconazole and sulfadiazine in paracoccidioidomycosis. Med Mycol 40:411–417

    CAS  PubMed  Google Scholar 

  52. Beggs WH (1982) Combined activity of ketoconazole and sulphamethoxazole against Candida albicans. J Antimicrob Chemother 10:539–541

    CAS  PubMed  Google Scholar 

  53. El-Sadr WM, Luskin-Hawk R, Yurik TM, Walker J, Abrams D, John SL, Sherer R, Crane L, Labriola A, Caras S, Pulling C, Hafner R (1999) A randomized trial of daily and thrice-weekly trimethoprim-sulfamethoxazole for the prevention of Pneumocystis carinii pneumonia in human immunodeficiency virus-infected persons. Terry Beirn Community Programs for Clinical Research on AIDS (CPCRA). Clin Infect Dis 29:775–783

    CAS  PubMed  Google Scholar 

  54. Afeltra J, Meis JF, Vitale RG, Mouton JW, Verweij PE (2002) In vitro activities of pentamidine, pyrimethamine, trimethoprim, and sulfonamides against Aspergillus species. Antimicrob Agents Chemother 46:2029–2031

    Article  CAS  PubMed  Google Scholar 

  55. Afeltra J, Meis JF, Mouton JW, Verweij PE (2001) Prevention of invasive aspergillosis in AIDS by sulfamethoxazole. AIDS 15:1067–1068

    Article  CAS  PubMed  Google Scholar 

  56. Beggs WH, Sarosi GA, Andrews FA (1974) Synergistic action of amphotericin B and rifampin on Candida albicans. Am Rev Respir Dis 110:671–673

    CAS  PubMed  Google Scholar 

  57. Beggs WH, Sarosi GA, Walker MI (1976) Synergistic action of amphotericin B and rifampin against Candida species. J Infect Dis 133:206–209

    CAS  PubMed  Google Scholar 

  58. Edwards JE Jr, Morrison J, Henderson DK, Montgomerie JZ (1980) Combined effect of amphotericin B and rifampin on Candida species. Antimicrob Agents Chemother 17:484–487

    CAS  PubMed  Google Scholar 

  59. Fujita NK, Edwards JE Jr (1981) Combined in vitro effect of amphotericin B and rifampin on Cryptococcus neoformans. Antimicrob Agents Chemother 19:196–198

    CAS  PubMed  Google Scholar 

  60. Medoff G (1983) Antifungal action of rifampin. Rev Infect Dis 5 [Suppl 3]:614–619

  61. Rifkind D, Crowder ED, Hyland RN (1974) In vitro inhibition of Coccidioides immitis strains with amphotericin B plus rifampin. Antimicrob Agents Chemother 6:783–784

    CAS  PubMed  Google Scholar 

  62. Kobbayashi GS, Medoff G, Schlessinger D, Kwan CN, Musser WE (1972) Amphotericin B potentiation of rifampicin as an antifungal agent against the yeast phase of Histoplasma capsulatum. Science 177:709–710

    CAS  PubMed  Google Scholar 

  63. Hughes CE, Harris C, Moody JA, Peterson LR, Gerding DN (1984) In vitro activities of amphotericin B in combination with four antifungal agents and rifampin against Aspergillus spp. Antimicrob Agents Chemother 25:560–562

    CAS  PubMed  Google Scholar 

  64. Kitahara M, Seth VK, Medoff G, Kobayashi GS (1976) Activity of amphotericin B, 5-fluorocytosine, and rifampin against six clinical isolates of Aspergillus. Antimicrob Agents Chemother 9:915–919

    CAS  PubMed  Google Scholar 

  65. Arroyo J, Medoff G, Kobayashi GS (1977) Therapy of murine aspergillosis with amphotericin B in combination with rifampin of 5-fluorocytosine. Antimicrob Agents Chemother 11:21–25

    CAS  PubMed  Google Scholar 

  66. Rodero L, Cordoba S, Cahn P, Hochenfellner F, Davel G, Canteros C, Kaufman S, Guelfand L (2000) In vitro susceptibility studies of Cryptococcus neoformans isolated from patients with no clinical response to amphotericin B therapy. J Antimicrob Chemother 45:239–242

    Article  CAS  PubMed  Google Scholar 

  67. Dannaoui E, Afeltra J, Meis JF, Verweij PE (2002) In vitro susceptibilities of zygomycetes to combinations of antimicrobial agents. Antimicrob Agents Chemother 46:2708–2711

    Article  CAS  PubMed  Google Scholar 

  68. Shen LL, Baranowski J, Fostel J, Montgomery DA, Lartey PA (1992) DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs. Antimicrob Agents Chemother 36:2778–2784

    CAS  PubMed  Google Scholar 

  69. Nakajima R, Kitamura A, Someya K, Tanaka M, Sato K (1995) In vitro and in vivo antifungal activities of DU-6859a, a fluoroquinolone, in combination with amphotericin B and fluconazole against pathogenic fungi. Antimicrob Agents Chemother 39:1517–1521

    CAS  PubMed  Google Scholar 

  70. Sugar AM, Liu XP, Chen RJ (1997) Effectiveness of quinolone antibiotics in modulating the effects of antifungal drugs. Antimicrob Agents Chemother 41:2518–2521

    CAS  PubMed  Google Scholar 

  71. Sasaki E, Maesaki S, Miyazaki Y, Yanagihara K, Tomono K, Tashiro T, Kohno S (2000) Synergistic effect of ofloxacin and fluconazole against azole-resistant Candida albicans. J Infect Chemother 6:151–154

    Article  CAS  PubMed  Google Scholar 

  72. Sugar AM, Liu XP (2000) Combination antifungal therapy in treatment of murine pulmonary mucormycosis: roles of quinolones and azoles. Antimicrob Agents Chemother 44:2004–2006

    Article  CAS  PubMed  Google Scholar 

  73. Kwan CN, Medoff G, Kobayashi GS, Schlessinger D, Raskas HJ (1972) Potentiation of the antifungal effects of antibiotics by amphotericin B. Antimicrob Agents Chemother 2:61–65

    CAS  PubMed  Google Scholar 

  74. Huppert M, Sun SH, Vukovich KR (1974) Combined amphotericin B-tetracycline therapy for experimental coccidioidomycosis. Antimicrob Agents Chemother 5:473–478

    CAS  PubMed  Google Scholar 

  75. Clancy CJ, Nguyen MH (1998) The combination of amphotericin B and azithromycin as a potential new therapeutic approach to fusariosis. J Antimicrob Chemother 41:127–130

    Article  CAS  PubMed  Google Scholar 

  76. Delling U, Raymond M, Schurr E (1998) Identification of Saccharomyces cerevisiae genes conferring resistance to quinoline ring-containing antimalarial drugs. Antimicrob Agents Chemother 42:1034–1041

    CAS  PubMed  Google Scholar 

  77. Levitz SM, Harrison TS, Tabuni A, Liu X (1997) Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J Clin Invest 100:1640–1646

    CAS  PubMed  Google Scholar 

  78. Weber SM, Levitz SM, Harrison TS (2000) Chloroquine and the fungal phagosome. Curr Opin Microbiol 3:349–353

    Article  CAS  PubMed  Google Scholar 

  79. Harrison TS, Griffin GE, Levitz SM (2000) Conditional lethality of the diprotic weak bases chloroquine and quinacrine against Cryptococcus neoformans. J Infect Dis 182:283–289

    Article  CAS  PubMed  Google Scholar 

  80. Newman SL, Gootee L, Brunner G, Deepe GS Jr (1994) Chloroquine induces human macrophage killing of Histoplasma capsulatum by limiting the availability of intracellular iron and is therapeutic in a murine model of histoplasmosis. J Clin Invest 93:1422–1429

    CAS  PubMed  Google Scholar 

  81. Kunin CM, Ellis WY (2000) Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob Agents Chemother 44:848–852

    Article  CAS  PubMed  Google Scholar 

  82. Tracy JW, Webster LT (1996) Drugs used in the chemotherapy of protozoal infections. In: McCurdy MJWAP (ed) The pharmacological basis of therapeutics. Goodman & Gilman's, pp 999–1001

  83. Sands M, Kron MA, Brown RB (1985) Pentamidine: a review. Rev Infect Dis 7:625–634

    CAS  PubMed  Google Scholar 

  84. Barchiesi F, Del Poeta M, Morbiducci V, Ancarani F, Scalise G (1994) Effect of pentamidine on the growth of Cryptococcus neoformans. J Antimicrob Chemother 33:1229–1232

    CAS  PubMed  Google Scholar 

  85. Ludewig G, Williams JM, Li Y, Staben C (1994) Effects of pentamidine isethionate on Saccharomyces cerevisiae. Antimicrob Agents Chemother 38:1123–1128

    CAS  PubMed  Google Scholar 

  86. Miletti KE, Leibowitz MJ (2000) Pentamidine inhibition of group I intron splicing in Candida albicans correlates with growth inhibition. Antimicrob Agents Chemother 44:958–966

    Article  CAS  PubMed  Google Scholar 

  87. Del Poeta M, Schell WA, Dykstra CC, Jones S, Tidwell RR, Czarny A, Bajic M, Kumar A, Boykin D, Perfect JR (1998) Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob Agents Chemother 42:2495–2502

    PubMed  Google Scholar 

  88. St-Germain G (1990) Effects of pentamidine alone and in combination with ketoconazole or itraconazole on the growth of Candida albicans. Antimicrob Agents Chemother 34:2304–2306

    CAS  PubMed  Google Scholar 

  89. Nolan A, Lamey PJ, MacFarlane TW, Aitchison TC, Shaw J, Sirel JY (1994) The effect of nebulised pentamidine on the concentration of intra-oral Candida albicans in HIV-infected patients. J Med Microbiol 41:95–97

    CAS  PubMed  Google Scholar 

  90. Idigoras P, Perez-Trallero E, Pineiro L, Larruskain J, Lopez-Lopategui MC, Rodriguez N, Gonzalez JM (2001) Disseminated infection and colonization by Scedosporium prolificans: a review of 18 cases, 1990–1999. Clin Infect Dis 32:158–165

    Article  Google Scholar 

  91. Berenguer J, Rodriguez-Tudela JL, Richard C, Alvarez M, Sanz MA, Gaztelurrutia L, Ayats J, Martinez-Suarez JV (1997) Deep infections caused by Scedosporium prolificans. A report on 16 cases in Spain and a review of the literature. Medicine (Baltimore) 76:256–265

  92. Afeltra J, Dannaoui E, Meis JF, Rodriguez-Tudela JL, Verweij PE (2002) In vitro synergistic interaction between amphotericin B and pentamidine against Scedosporium prolificans. Antimicrob Agents Chemother 46:3323–3326

    Article  CAS  PubMed  Google Scholar 

  93. Hardin TC, Najvar LK, Rizzo J, Fothergill AW, Rinaldi MG, Graybill JR (1997) Discrepancy between in vitro and in vivo antifungal activity of albendazole. J Med Vet Mycol 35:153–158

    CAS  PubMed  Google Scholar 

  94. De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TE, Walsh TJ (1997) Fungicidal activity of cecropin A. Antimicrob Agents Chemother 41:481–483

    PubMed  Google Scholar 

  95. Del Poeta M, Schell WA, Dykstra CC, Jones SK, Tidwell RR, Kumar A, Boykin DW, Perfect JR (1998) In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles. Antimicrob Agents Chemother 42:2503–2510

    PubMed  Google Scholar 

  96. McElhaney-Feser GE, Raulli RE, Cihlar RL (1998) Synergy of nitric oxide and azoles against Candida species in vitro. Antimicrob Agents Chemother 42:2342–2346

    CAS  PubMed  Google Scholar 

  97. De Lucca AJ, Walsh TJ, Daigle DJ (1996) N-acetylcysteine inhibits germination of conidia and growth of Aspergillus spp. and Fusarium spp. Antimicrob Agents Chemother 40:1274–1276

    PubMed  Google Scholar 

  98. Chin NX, Weitzman I, Della-Latta P (1997) In vitro activity of fluvastatin, a cholesterol-lowering agent, and synergy with fluconazole and itraconazole against Candida species and Cryptococcus neoformans. Antimicrob Agents Chemother 41:850–852

    CAS  PubMed  Google Scholar 

  99. Kivisto KT, Kantola T, Neuvonen PJ (1998) Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 46:49–53

    CAS  PubMed  Google Scholar 

  100. Meier C, Stey C, Brack T, Maggiorini M, Risti B, Krahenbuhl S (1995) Rhabdomyolysis in patients treated with simvastatin and cyclosporin: role of the hepatic cytochrome P450 enzyme system activity. Schweiz Med Wochenschr 125:1342–1346

    CAS  PubMed  Google Scholar 

  101. Jacobson RH, Wang P, Glueck CJ (1997) Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone. JAMA 277:296–297

    Article  CAS  PubMed  Google Scholar 

  102. Nash JD, Burgess DS, Talbert RL (2002) Effect of fluvastatin and pravastatin, HMG-CoA reductase inhibitors, on fluconazole activity against Candida albicans. J Med Microbiol 51:105–109

    Article  CAS  PubMed  Google Scholar 

  103. Scott EM, Tariq VN, McCrory RM (1995) Demonstration of synergy with fluconazole and either ibuprofen, sodium salicylate, or propylparaben against Candida albicans in vitro. Antimicrob Agents Chemother 39:2610–2614

    CAS  PubMed  Google Scholar 

  104. Tariq VN, Scott EM, McCain NE (1995) Use of decimal assay for additivity to demonstrate synergy in pair combinations of econazole, nikkomycin Z, and ibuprofen againstCandida albicans in vitro. Antimicrob Agents Chemother 39:2615–2619

    CAS  PubMed  Google Scholar 

  105. Pina-Vaz C, Sansonetty F, Rodrigues AG, Martinez-De Oliveira J, Fonseca AF, Mardh PA (2000) Antifungal activity of ibuprofen alone and in combination with fluconazole against Candida species. J Med Microbiol 49:831–840

    CAS  PubMed  Google Scholar 

  106. Finquelievich J, Iovanniti C, Landaburu F, Raffin G, Sanjuan N, Elias Costa MR, Negroni R (2002) Disminución de la actividad antifúngica del fluconazol asociada a ibuprofeno y piroxican en la histoplasmosis experimental del hámster (Mesocricetus auratus). Rev Iberoam Micol 19:40–43

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Verweij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afeltra, J., Verweij, P.E. Antifungal Activity of Nonantifungal Drugs. Eur J Clin Microbiol Infect Dis 22, 397–407 (2003). https://doi.org/10.1007/s10096-003-0947-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-003-0947-x

Keywords

Navigation