Skip to main content

Frontier in Antifungal Treatments Against Major Human Fungal Opportunistic Pathogen Candida Species and Medically Important Fungi

  • Chapter
  • First Online:
Non-conventional Yeasts: from Basic Research to Application

Abstract

The extensive uses of antifungal agents to treat fungal infections have created a global public health issue of drug resistance. Candida species and other pathogenic mycoses are the leading causes of invasive fungal infections and high mortality rate in human population. A limited number of antifungal agents show fungicidal effect; repetitive uses of fungistatic drugs lead to the development of drug resistance. New antifungal agents with a broader spectrum of activity and novel mechanisms of action have been recently developed to fight against resistant fungal strains and clinical isolates. This would create a possibility to investigate antifungal combinations in vitro, in yeast and in animal models. If the drugs have different mechanisms of action, increased drug potency and efficacy with reduced toxicity may be rewarded. Recently, there are several investigational antifungal agents on repurposing drugs and natural products from different sources––plants, microbial, and marines––which may be considered when designing antifungal drug combinations. Imminently, more classes of antifungals from natural products may be added to the current antifungal armamentarium. Therefore, the new frontier of combination therapy and natural drug discovery should continue to be pursued with anticipation while excessive and repetitive antifungal usage shall be refrained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad A et al (2010a) Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 81(8):1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A et al (2010b) In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J Med Microbiol 59(Pt 10):1178–1184

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A et al (2017) Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Med Chem Comm 8(12):2195–2207

    Article  CAS  Google Scholar 

  • Aicher TD et al (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114(8):3162–3164

    Article  CAS  Google Scholar 

  • Akache B, Turcotte B (2002) New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem 277(24):21254–21260

    Article  CAS  PubMed  Google Scholar 

  • Alborzi A, Moeini M, Haddadi P (2012) Antifungal susceptibility of the Aspergillus species by Etest and CLSI reference methods. Arch Iran Med 15(7):429

    PubMed  Google Scholar 

  • Alvarez-Miranda M et al 2003 Characterization of the mechanism of action of ES-285, a novel antitumor drug from Mactromeris poynyma. In Clinical cancer research. American Association for Cancer Research, Philadelphia

    Google Scholar 

  • Arendrup MC (2014) Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect 20:42–48

    Article  CAS  PubMed  Google Scholar 

  • Armstrong AW, Bukhalo M, Blauvelt A (2016) A clinician’s guide to the diagnosis and treatment of Candidiasis in patients with psoriasis. Am J Clin Dermatol 17(4):329–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Baddley JW (2011a) Clinical risk factors for invasive aspergillosis. Med Mycol 49(Suppl 1):S7–s12

    Article  PubMed  Google Scholar 

  • Baddley JW (2011b) Clinical risk factors for invasive aspergillosis. Med Mycol 49(Suppl 1):S7–S12

    Article  PubMed  Google Scholar 

  • Bao L et al (2010) (-)-Sclerotiorin from an unidentified marine fungus as an anti-meiotic and anti-fungal agent. Nat Prod Commun 5(11):1789–1792

    CAS  PubMed  Google Scholar 

  • Barrett D (2002a) From natural products to clinically useful antifungals. Biochim Biophys Acta 1587(2–3):224–233

    Article  CAS  PubMed  Google Scholar 

  • Barrett D (2002b) From natural products to clinically useful antifungals. Biochim Biophys Acta (BBA) Mol Basis Dis 1587(2):224–233

    Article  CAS  Google Scholar 

  • Bartoletti M et al (2013) Incidence and outcome of early Candida peritonitis after liver and pancreas transplantation. Mycoses 56(2):162–167

    Article  PubMed  Google Scholar 

  • Bassetti M et al (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Beardsley J et al (2018) Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 13:1175–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezakova L et al (1996) Lipoxygenase inhibition and antioxidant properties of bisbenzylisoqunoline alkaloids isolated from Mahonia aquifolium. Pharmazie 51(10):758–761

    CAS  PubMed  Google Scholar 

  • Bhatnagar I, Kim SK (2012) Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective. Environ Toxicol Pharmacol 34(3):631–643

    Article  CAS  PubMed  Google Scholar 

  • Borjihan H et al (2009) The vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans and its enhancement by allicin. J Antibiot (Tokyo) 62(12):691–697

    Article  CAS  Google Scholar 

  • Brown GD, Denning DW, Levitz SM (2012a) Tackling human fungal infections. Science 336(6082):647–647

    Article  CAS  PubMed  Google Scholar 

  • Brown GD et al (2012b) Hidden Killers: Human Fungal Infections. Sci Transl Med 4(165):165rv13

    Article  PubMed  CAS  Google Scholar 

  • Campoy S, Adrio JL (2017a) Antifungals. Biochem Pharmacol 133:86–96

    Article  CAS  PubMed  Google Scholar 

  • Campoy S, Adrio JL (2017b) Antifungals. Biochem Pharmacol 133:86–96

    Article  CAS  PubMed  Google Scholar 

  • Cappelletty D, Eiselstein-McKitrick K (2007) The Echinocandins. Pharmacotherapy 27(3):369–388

    Article  CAS  PubMed  Google Scholar 

  • Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213(5073):261–264

    Article  CAS  PubMed  Google Scholar 

  • Chang YL et al (2017) New facets of antifungal therapy. Virulence 8(2):222–236

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2008) Analysis of major alkaloids in Rhizoma coptidis by capillary electrophoresis-electrospray-time of flight mass spectrometry with different background electrolytes. Electrophoresis 29(10):2135–2147

    Article  CAS  PubMed  Google Scholar 

  • Chin Y-W et al (2006) Drug discovery from natural sources. AAPS J 8(2):E239–E253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhary A et al (2014) Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiol 9(5):697–711

    Article  CAS  PubMed  Google Scholar 

  • Coste AT et al (2004) TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3(6):1639–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cragg GM (1998) Paclitaxel (Taxol®): a success story with valuable lessons for natural product drug discovery and development. Med Res Rev 18(5):315–331

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: A continuing source of novel drug leads. Biochim Biophys Acta Gen Subj 1830(6):3670–3695

    Article  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Biochemistry and molecular biology of plants, vol 24. West Sussex, Chichester, pp 1250–1319

    Google Scholar 

  • Cruz LIB et al (2018) Anti-Candida albicans activity of thiazolylhydrazone derivatives in invertebrate and murine models. J Fungi (Basel) 4(4):1–14

    Article  PubMed Central  Google Scholar 

  • Cuadros R et al (2000) The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett 152(1):23–29

    Article  CAS  PubMed  Google Scholar 

  • de Aguiar Cordeiro R et al (2014) The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. J Med Microbiol 63(7):936–944

    Article  CAS  Google Scholar 

  • De Rosa FG et al (2016) Appropriate treatment of invasive candidiasis in ICU: timing, colonization index, Candida Score & Biomarkers, Towards de-Escalation? Turkish J Anaesthesiol Reanimat 44(6):279–282

    Article  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362(9390):1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Derengowski LS et al (2009) Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob 8:13–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhamgaye S et al (2014) Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLoS One 9(8):e104554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2(2):303–336

    CAS  Google Scholar 

  • Domínguez JM, Martín JJ (1998) Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42(9):2279–2283

    Article  PubMed  PubMed Central  Google Scholar 

  • Domínguez JM et al (1998) Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 42(9):2274–2278

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominguez JM, Gomez-Lorenzo MG, Martin JJ (1999) Sordarin inhibits fungal protein synthesis by blocking translocation differently to fusidic acid. J Biol Chem 274(32):22423–22427

    Article  CAS  PubMed  Google Scholar 

  • Dutcher JD (1968) The discovery and development of amphotericin B. Chest 54:296–298

    Google Scholar 

  • Facts et al (2004) The review of natural products: formerly lawrence review of natural products published by facts and comparisons. Lippincott Williams & Wilkins, London

    Google Scholar 

  • Faria NC et al (2011) Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 52(5):506–513

    Article  CAS  PubMed  Google Scholar 

  • Farmakiotis D, Kontoyiannis DP (2016) Mucormycoses. Infect Dis Clin N Am 30(1):143–163

    Article  Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18(1):1R–49R

    Article  Google Scholar 

  • Gao S-S et al (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg Med Chem Lett 21(10):2894–2897

    Article  CAS  PubMed  Google Scholar 

  • Georgiev VS (2000) Membrane transporters and antifungal drug resistance. Curr Drug Targets 1(3):261–284

    Article  CAS  Google Scholar 

  • Golinska P et al (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097

    Article  CAS  PubMed  Google Scholar 

  • Greenberg R et al (2006) Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother 50(1):126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo N et al (2009) Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. J Med Microbiol 58.(Pt 8:1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544

    Article  CAS  PubMed  Google Scholar 

  • Haidle AM, Myers AG (2004) An enantioselective, modular, and general route to the cytochalasins: Synthesis of L-696,474 and cytochalasin B. Proc Natl Acad Sci U S A 101(33):12048–12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015a) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015b) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129

    Article  CAS  PubMed  Google Scholar 

  • Hauser D, Sigg HP (1971) Isolation and decomposition of sordarin. Helv Chim Acta 54(4):1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Howard SJ, Pasqualotto AC, Denning DW (2010) Azole resistance in allergic bronchopulmonary aspergillosis and Aspergillus bronchitis. Clin Microbiol Infect 16(6):683–688

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AS et al (2008) Combination echinocandin-polyene treatment of murine mucormycosis. Antimicrob Agents Chemother 52(4):1556–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitsuka MO, Kusumi T, Kakisawa H (1988) Antitumor xenicane and norxenicane lactones from the brown alga Dictyota dichotoma. J Org Chem 53(21):5010–5013

    Article  CAS  Google Scholar 

  • Iwazaki RS et al (2010) In vitro antifungal activity of the berberine and its synergism with fluconazole. Antonie Van Leeuwenhoek 97(2):201

    Article  CAS  PubMed  Google Scholar 

  • Jiang C et al (2012) Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother 68(4):778–785

    Article  PubMed  CAS  Google Scholar 

  • Justice MC et al (1998) Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273(6):3148–3151

    Article  CAS  PubMed  Google Scholar 

  • Kim J et al (2008) Chemosensitization prevents tolerance of Aspergillus fumigatus to antimycotic drugs. Biochem Biophys Res Commun 372(1):266–271

    Article  CAS  PubMed  Google Scholar 

  • Kofla G, Ruhnke M (2011) Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis-review of the literature. Eur J Med Res 16(4):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaczkowska A, Goffeau A (1999) Regulation of pleiotropic drug resistance in yeast. Drug Resist Updat 2(6):403–414

    Article  CAS  PubMed  Google Scholar 

  • Kołaczkowska A, Kołaczkowski M (2016) Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 71(6):1438–1450

    Article  PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Sugui JA (2013) Aspergillus fumigatus – what makes the species a ubiquitous human fungal pathogen? PLoS Pathog 9(12):e1003743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laniado-Laborin R, Cabrales-Vargas MN (2009) Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26(4):223–227

    Article  PubMed  Google Scholar 

  • Lei J, Xu J, Wang T (2018) In vitro susceptibility of Candida spp. to fluconazole, itraconazole and voriconazole and the correlation between triazoles susceptibility: results from a five-year study. Journal de mycologie medicale 28(2):310–313

    Article  CAS  PubMed  Google Scholar 

  • Levy ER et al (2013) Treatment of pediatric refractory coccidioidomycosis with combination voriconazole and caspofungin: a retrospective case series. Clin Infect Dis 56(11):1573–1578

    Article  CAS  PubMed  Google Scholar 

  • Li D-D et al (2013) Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 57:6016–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litaudon M et al (1994) Isohomohalichondrin B, a new antitumour polyether macrolide from the New Zealand deep-water sponge Lissodendoryx sp. Tetrahedron Lett 35(50):9435–9438

    Article  CAS  Google Scholar 

  • MacPherson S et al (2005) Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 49(5):1745–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70(3):583–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandala SM et al (1997a) Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272(51):32709–32714

    Article  CAS  PubMed  Google Scholar 

  • Mandala SM et al (1997b) Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272(51):32709–32714

    Article  CAS  PubMed  Google Scholar 

  • Mann J (2000) Murder, magic, and medicine. Oxford University Press, New York

    Google Scholar 

  • Marchese A et al (2016) Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem 210:402–414

    Article  CAS  PubMed  Google Scholar 

  • Marchetti O et al (2000) Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob Agents Chemother 44(9):2373–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinelli F (2009) Chapter 2. from microbial products to novel drugs that target a multitude of disease indications. 2009/04/21 ed. Methods Enzymol 458:29–58

    Article  CAS  PubMed  Google Scholar 

  • Marr KA et al (2015) Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med 162(2):81–89

    Article  PubMed  Google Scholar 

  • Martin KW, Ernst E (2004) Herbal medicines for treatment of fungal infections: a systematic review of controlled clinical trials. Mycoses 47(3–4):87–92

    Article  PubMed  Google Scholar 

  • Maschmeyer G, Haas A, Cornely OA (2007) Invasive aspergillosis: epidemiology, diagnosis and management in immunocompromised patients. Drugs 67(11):1567–1601

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM et al (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miceli MH, Kauffman CA (2015) Isavuconazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin Infect Dis 61(10):1558–1565

    Article  CAS  PubMed  Google Scholar 

  • Mišík V et al (1995) Lipoxygenase inhibition and antioxidant properties of protoberberine and aporphine alkaloids isolated from Mahonia aquifolium. Planta Med 61(04):372–373

    Article  PubMed  Google Scholar 

  • Mogavero S et al (2011) Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1. Antimicrob Agents Chemother 55:2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora C et al (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno I et al (2003) Characterization of a Candida albicans gene encoding a putative transcriptional factor required for cell wall integrity. FEMS Microbiol Lett 226(1):159–167

    Article  CAS  PubMed  Google Scholar 

  • Morschhäuser J et al (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3(11):e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moye-Rowley WS (2003a) Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2(3):381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moye-Rowley WS (2003b) Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol 73:251–279

    Article  CAS  PubMed  Google Scholar 

  • Negri M et al (2014) Early state research on antifungal natural products. Molecules 19(3):2925–2956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishikawa JL et al (2016) Inhibiting fungal multidrug resistance by disrupting an activator-mediator interaction. Nature 530(7591):485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hagan D (1991) The polyketide metabolites. Ellis Horwood Ltd, Chichester

    Google Scholar 

  • Odds FC (2001) Sordarin antifungal agents. Expert Opin Ther Pat 11(2):283–294

    Article  Google Scholar 

  • Papich MG (2016) Griseofulvin. In Papich MG (ed) Saunders handbook of veterinary drugs, 4th edn. W.B. Saunders, St. Louis, pp 367–368

    Chapter  Google Scholar 

  • Pappas PG et al (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48(5):503–535

    Article  CAS  PubMed  Google Scholar 

  • Pappas PG et al (2010) Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis 50(8):1101–1111

    Article  PubMed  Google Scholar 

  • Pappas PG et al (2016) Clinical practice guideline for the management of Candidiasis: 2016 update by the infectious diseases Society of America. Clin Infect Dis 62(4):e1–e50

    Article  PubMed  Google Scholar 

  • Perfect JR (2017) The antifungal pipeline: a reality check. Nat Rev Drug Discov 16(9):603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfect JR et al (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 50(3):291–322

    Article  PubMed  Google Scholar 

  • Perkhofer S et al (2008) Posaconazole enhances the activity of amphotericin B against hyphae of zygomycetes in vitro. Antimicrob Agents Chemother 52(7):2636–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin DS (2011) Current perspectives on echinocandin class drugs. Future Microbiol 6(4):441–457

    Article  CAS  PubMed  Google Scholar 

  • Pettit GR et al (1991) Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem 34(11):3339–3340

    Article  CAS  PubMed  Google Scholar 

  • Pettit GR et al (1993) Antineoplastic agents. 251. Isolation and structure of stylostatin 1 from the Papua New Guinea marine sponge Stylotella sp. [Erratum to document cited in CA118 (5): 36157a]. J Org Chem 58(11):3222–3222

    Article  CAS  Google Scholar 

  • Pinkofsky HB, Dwyer DS, Bradley RJ (2000) The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants. Life Sci 66(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • Pongcharoen W et al (2007) Cytotoxic metabolites from the wood-decayed fungus Xylaria sp. BCC 9653. Chem Pharm Bull 55(11):1647–1648

    Article  CAS  Google Scholar 

  • Radulovic NS et al (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20(7):932–952

    CAS  PubMed  Google Scholar 

  • Richter SS et al (2005) Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol 43(5):2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringel S et al (1977) Ambruticin (W7783), a new antifungal antibiotic. J Antibiot 30(5):371–375

    Article  CAS  Google Scholar 

  • Rivero-Menendez O et al (2016) Triazole resistance in Aspergillus spp.: a worldwide problem? J Fungi (Basel, Switzerland) 2(3):21

    Google Scholar 

  • Robbins N, Wright GD, Cowen LE (2016) Antifungal drugs: the current armamentarium and development of new agents. Microbiol Spectr 4(5):903–922

    Google Scholar 

  • Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4(5):a019703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothweiler W, Tamm C (1966) Isolation and structure of Phomin. Experientia 22(11):750–752

    Article  CAS  Google Scholar 

  • Salcedo M et al (2003) The marine antitumor compound ES 285 activates EGD receptors. In: Clinical cancer research. American Association for Cancer Research, Philadelphia

    Google Scholar 

  • Sanglard D (2002) Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5(4):379–385

    Article  CAS  PubMed  Google Scholar 

  • Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7(8):979–990

    Article  CAS  PubMed  Google Scholar 

  • Scherlach K et al (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27(6):869–886

    Article  CAS  PubMed  Google Scholar 

  • Scorzoni L et al (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 8:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao J et al (2016) Antiproliferation of berberine in combination with fluconazole from the perspectives of reactive oxygen species, ergosterol and drug efflux in a fluconazole-resistant Candida tropicalis isolate. Front Microbiol (7):1516

    Google Scholar 

  • Sharma M et al (2010) Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 10(5):570–578

    CAS  PubMed  Google Scholar 

  • Shastry M et al (2001) Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. Microbiology 147(Pt 2):383–390

    Article  CAS  PubMed  Google Scholar 

  • Shi D et al (2016) Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans. Int J Clin Pharmacol Ther 54(5):343–353

    Article  CAS  PubMed  Google Scholar 

  • Silver PM, Oliver BG, White TC (2004) Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3(6):1391–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skiada A et al (2013) Diagnosis and treatment of mucormycosis in patients with hematological malignancies: guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica 98(4):492–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somboon P et al (2017) Fungicide Xylaria sp. BCC 1067 extract induces reactive oxygen species and activates multidrug resistance system in Saccharomyces cerevisiae. Future Microbiol 12:417–440

    Article  CAS  PubMed  Google Scholar 

  • Song F et al (2010) Trichodermaketones A− D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J Nat Prod 73(5):806–810

    Article  CAS  PubMed  Google Scholar 

  • Song F et al (2014) Secondary metabolites from the genus Xylaria and their bioactivities. Chem Biodivers 11(5):673–694

    Article  CAS  PubMed  Google Scholar 

  • Soontorngun N et al (2007) Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol 27(22):7895–7905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spellberg B et al (2005) Combination therapy with amphotericin B lipid complex and caspofungin acetate of disseminated zygomycosis in diabetic ketoacidotic mice. Antimicrob Agents Chemother 49(2):830–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spitzer M, Robbins N, Wright GD (2017) Combinatorial strategies for combating invasive fungal infections. Virulence 8(2):169–185

    Article  CAS  PubMed  Google Scholar 

  • Stone NR et al (2016) Liposomal amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76(4):485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43(10):1647–1657

    Article  CAS  PubMed  Google Scholar 

  • Susan JH et al (2009) Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis J 15(7):1068

    Article  CAS  Google Scholar 

  • Taborda CP, Nosanchuk JD (2017) Editorial: vaccines, immunotherapy and new antifungal therapy against fungi: updates in the New Frontier. Front Microbiol 8:1743

    Article  PubMed  PubMed Central  Google Scholar 

  • Talibi D, Raymond M (1999) Isolation of a Putative Candida albicans Transcriptional Regulator Involved in Pleiotropic Drug Resistance by Functional Complementation of a pdr1 pdr3 Mutation in Saccharomyces cerevisiae. J Bacteriol 181(1):231–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan W et al (2011) Berberine hydrochloride: anticancer activity and nanoparticulate delivery system. Int J Nanomedicine 6:1773–1777

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarman K et al (2011) Biological and chemical study of two Indonesian marine endophytic fungi. Planta Med 77(12):SL71

    Article  Google Scholar 

  • Tarman K et al (2012) Helicascolide C, a new lactone from an Indonesian marine algicolous strain of Daldinia eschscholzii (Xylariaceae, Ascomycota). Phytochem Lett 5(1):83–86

    Article  CAS  Google Scholar 

  • Tedesco D, Haragsim L (2012) Cyclosporine: a review. J Transplant 2012:230386–230386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trimurtulu G et al (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116(11):4729–4737

    Article  CAS  Google Scholar 

  • Tsiodras S et al (2008) Fungal infections complicating tumor necrosis factor alpha blockade therapy. Mayo Clin Proc 83(2):181–194

    Article  CAS  PubMed  Google Scholar 

  • Uemura D et al (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107(16):4796–4798

    Article  CAS  Google Scholar 

  • Vallabhaneni S, Chiller TM (2016) Fungal infections and new biologic therapies. Curr Rheumatol Rep 18(5):29

    Article  PubMed  CAS  Google Scholar 

  • Vandeputte P et al (2011a) Molecular mechanisms of resistance to 5-fluorocytosine in laboratory mutants of Candida glabrata. Mycopathologia 171(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte P, Ferrari S, Coste AT (2011b) Antifungal resistance and new strategies to control fungal infections. Intl J Microbiol 2012

    Google Scholar 

  • Vazquez JA (2007) Combination antifungal therapy: the new frontier. Future Microbiol 2(2):115–139

    Article  CAS  PubMed  Google Scholar 

  • Verweij PE et al (2016) Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 62(3):362–368

    Article  CAS  PubMed  Google Scholar 

  • Vetcher L et al (2007) The antifungal polyketide ambruticin targets the HOG pathway. Antimicrob Agents Chemother 51(10):3734–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi T, Mori K, Kobayashi S (2001) Total synthesis and structural elucidation of khafrefungin. J Am Chem Soc 123(7):1372–1375

    Article  CAS  PubMed  Google Scholar 

  • Walsh TJ et al (2008a) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46(3):327–360

    Article  CAS  PubMed  Google Scholar 

  • Walsh TJ et al (2008b) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46(3):327–360

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2012) Waikialoid A Suppresses Hyphal Morphogenesis and Inhibits Biofilm Development in Pathogenic Candida albicans. J Nat Prod 75(4):707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B et al (2014) Polyketide glycosides from Bionectria ochroleuca inhibit Candida albicans biofilm formation. J Nat Prod 77(10):2273–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watve MG et al (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176(5):386–390

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Schulz B, Ruhnke M (2010) The quorum-sensing molecule E,E-farnesol—its variable secretion and its impact on the growth and metabolism of Candida species. Yeast 27(9):727–739

    Article  CAS  PubMed  Google Scholar 

  • Wei H et al (2015) Sesquiterpenes and other constituents of Xylaria sp. NC1214, a fungal endophyte of the moss Hypnum sp. Phytochemistry 118:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B et al (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12(3):1208–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J et al (2017) In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling 33(4):283–293

    Article  CAS  PubMed  Google Scholar 

  • You J et al (2013) Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates. ACS Chem Biol 8(4):840–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y-H et al (2018) An insight into new strategies to combat antifungal drug resistance. Drug Des Devel Ther 12:3807

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by Thailand Research Fund, National Research Council of Thailand, and King Mongkut’s University of Technology Thonburi through the KMUTT 55th Anniversary commemorative fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitnipa Soontorngun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soontorngun, N., Somboon, P., Watchaputi, K. (2019). Frontier in Antifungal Treatments Against Major Human Fungal Opportunistic Pathogen Candida Species and Medically Important Fungi. In: Sibirny, A. (eds) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_13

Download citation

Publish with us

Policies and ethics