Skip to main content

Antifungal Drugs

  • Chapter
  • First Online:
Current Progress in Medical Mycology

Abstract

Fungal infections have increased globally due to the increment of the size of population at risk for fungal infection, which is a consequence of the increased use of immunosuppressive drugs and invasive techniques for advanced life support and extended life expectancy among other reasons. Although invasive fungal infections currently are a significant cause of mortality among critically ill patients, development and approval of new systemic antifungal drugs have not occurred at the same rate as the increase in the number of fungal infections. Only one new class of systemic antifungal drugs, Echinocandins, has been included in the antifungal armamentarium in the last 20 years.

The purpose of this chapter is to review the systemic antifungal drugs currently in use, including new insights on pharmacologic and pharmacokinetics properties, clinical indications, adverse events, and resistance mechanisms. Resistance to antifungal drugs is particularly important because it has increased for every drug, including the echinocandins class. New formulations of triazol drugs and combination therapy is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takemoto K, Yamamoto Y, Ueda Y (2006) Evaluation of antifungal pharmacodynamic characteristics of AmBisome against Candida albicans. Microbiol Immunol 50:579–586

    Article  CAS  PubMed  Google Scholar 

  2. Donovick R, Gold WH, Pagano JF, Stout HA (1955–1956) Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu 3:579–586

    PubMed  Google Scholar 

  3. Mechlinski W, Schaffner CP, Ganis P, Avitabile G (1970) Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B. Tetrahedron Lett 44:3873–3876

    Article  Google Scholar 

  4. National Center for Biotechnology Information. PubChem Compound Database; CID=5280965. https://pubchem.ncbi.nlm.nih.gov/compound/amphotericin%20B. Accessed 29 Jan 2017

  5. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nair MP, Schwartz SA (1982) Immunomodulatory effects of amphotericin-B on cellular cytotoxicity of normal human lymphocytes. Cell Immunol 70:287–300

    Article  CAS  PubMed  Google Scholar 

  7. Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christiansen KJ, Bernard EM, Gold JW, Armstrong D (1985) Distribution and activity of amphotericin B in humans. J Infect Dis 152:1037–1043

    Article  CAS  PubMed  Google Scholar 

  9. Collette N, van der Auwera P, Lopez AP, Heymans C, Meunier F (1989) Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B-deoxycholate. Antimicrob Agents Chemother 33:362–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 46:834–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ernst EJ, Klepser ME, Pfaller MA (2000) Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans. Antimicrob Agents Chemother 44:1108–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atkinson AJ, Bennett JE (1978) Amphotericin B Pharmacokinetics in humans. Antimicrob Agents Chemother 13:271–276

    Article  PubMed  PubMed Central  Google Scholar 

  13. Turnidge JD, Gudmundsson S, Vogelman B, Craig WA (1994) The postantibiotic effect of antifungal agents against common pathogenic yeasts. J Antimicrob Chemother 34:83–92

    Article  CAS  PubMed  Google Scholar 

  14. Andes D, Stamstad T, Conklin R (2001) Pharmacodynamics of amphotericin B in a neutropenic mouse disseminated-candidiasis model. Antimicrob Agents Chemother 45:922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andes D, Safdar N, Marchillo K, Conklin R (2006) Pharmacokinetic-pharmacodynamic comparison of amphotericin B (AMB) and two lipid-associated AMB preparations, liposomal AMB and AMB lipid complex, in murine candidiasis models. Antimicrob Agents Chemother 50:674–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Nakeeb Z, Petraitis V, Goodwin J, Petraitiene R, Walsh TJ, Hope WW (2015) Pharmacodynamics of amphotericin B deoxycholate, amphotericin B lipid complex, and liposomal amphotericin B against Aspergillus fumigatus. Antimicrob Agents Chemother 59:2735–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luna B, Drew RH, Perfect JR (2000) Agents for treatment of invasive fungal infections. Otolaryngol Clin N Am 33:277–299

    Article  CAS  Google Scholar 

  18. Kutty K, Neicheril JC (1987) Treatment of pleural blastomycosis: penetration of amphotericin B into the pleural fluid. J Infect Dis 156:689–690

    Article  CAS  PubMed  Google Scholar 

  19. Craven PC, Ludden TM, Drutz DJ, Rogers W, Haegele KA, Skrdlant HB (1979) Excretion pathways of amphotericin B. J Infect Dis 140:329–341

    Article  CAS  PubMed  Google Scholar 

  20. Tortorano AM, Prigitano A, Biraghi E, Viviani MA (2005) The European Confederation of Medical Mycology (ECMM) survey of candidaemia in Italy: in vitro susceptibility of 375 Candida albicans isolates and biofilm production. J Antimicrob Chemother 56:777–779

    Article  CAS  PubMed  Google Scholar 

  21. Blinkhorm RJ, Adelstein D, Spagnuolo PJ (1989) Emergence of a new opportunistic pathogen, Candida lusitaniae. J Clin Microbiol 27:236–240

    Google Scholar 

  22. Walsh TJ, Melcher GP, Rinaldi MG, Lecciones J, McGough DA, Kelly P, Lee J, Callender D, Rubin M, Pizzo PA (1990) Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol 28:1616–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Messer SA, Jones RN, Fritsche TR (2006) International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2003). J Clin Microbiol 44:1782–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martel CM, Parker JE, Bader O et al (2010) A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alphademethylase) and ERG5 (encoding C22 desaturase) is cross-resistant to azoles and amphotericin B. Antimicrob Agents Chemother 54:3578–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanglard DIscher F, Parkinson T, Falconer D, Bille J (2003) Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47:2404–2412

    Article  Google Scholar 

  26. Hull CM, Bader O, Parker JE et al (2012) Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother 56:6417–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vandeputte P, Tronchin G, Larcher G et al (2008) A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother 52:3701–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Young LY, Hull CM, Heitman J (2003) Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 47:2717–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pappas PG, Kauffman CA, Andes DR et al (2016) Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62:e1–50

    Article  PubMed  Google Scholar 

  30. Perfect JR, Dismukes WE, Dromer F et al (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 50:291–322

    Article  PubMed  Google Scholar 

  31. Skiada A, Lanternier F, Groll AH et al (2013) Diagnosis and treatment of mucormycosis in patients with hematological malignancies: guidelines from the 3rd European Conference on Infections in Leukemia (ECIL 3). Haematologica 98(4):492–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chapman SW, Dismukes WE, Proia LA et al, Infectious Diseases Society of America (2008) Clinical practice guidelines for the management of blastomycosis: 2008 update by the Infectious Diseases Society of America. Clin Infect Dis 46:1801–1812

    Google Scholar 

  33. Wheat LJ, Freifeld AG, Kleiman MB, et al, Infectious Diseases Society of America (2007) Clinical practice guidelines for the management of patients with histoplasmosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 45:807–825

    Google Scholar 

  34. Xia D, Sun WK, Tan MM et al (2015) Aerosolized amphotericin B as prophylaxis for invasive pulmonary aspergillosis: a meta-analysis. Int J Infect Dis 30:78–84

    Article  CAS  PubMed  Google Scholar 

  35. Patterson TF, Thompson GR 3rd, Denning DW et al (2016) Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 63:e1–e60

    Article  PubMed  PubMed Central  Google Scholar 

  36. Naidoff MA, Green WR (1975) Endogenous Aspergillus endophthalmitis occurring after kidney transplant. Am J Ophthalmol 79:502–509

    Article  CAS  PubMed  Google Scholar 

  37. Roney P, Barr CC, Chun CH, Raff MJ (1986) Endogenous Aspergillus endophthalmitis. Rev Infect Dis 8:955–958

    Article  CAS  PubMed  Google Scholar 

  38. Weishaar PD, Flynn HW Jr, Murray TG et al (1998) Endogenous Aspergillus endophthalmitis: clinical features and treatment outcomes. Ophthalmology 105:57–65

    Article  CAS  PubMed  Google Scholar 

  39. Wilmarth SS, May DR, Roth AM, Cole RJ, Nolan S, Goldstein E (1983) Aspergillus endophthalmitis in an intravenous drug user. Ann Ophthalmol 15:470–472

    CAS  PubMed  Google Scholar 

  40. Essman TF, Flynn HW Jr, Smiddy WE et al (1997) Treatment outcomes in a 10-year study of endogenous fungal endophthalmitis. Ophthalmic Surg Lasers 28:185–194

    CAS  PubMed  Google Scholar 

  41. Bae JH, Lee SC (2015) Intravitreal liposomal amphotericin B for treatment of endogenous candida endophthalmitis. Jpn J Ophthalmol 59:346–352

    Article  CAS  PubMed  Google Scholar 

  42. Drew RH, Arthur RR, Perfect JR (2005) Is it time to abandon the use of amphotericin B bladder irrigation? Clin Infect Dis 40:1465–1470

    Article  PubMed  Google Scholar 

  43. Sau K, Mambula SS, Latz E, Henneke P, Golenbock DT, Levitz SM (2003) The antifungal drug amphotericin B promotes inflammatory cytokine release by a tolllike receptor and CD14-dependent mechanism. J Biol Chem 278:37561–37568

    Article  CAS  PubMed  Google Scholar 

  44. Burke D, Lal R, Finkel KW, Samuels J, Foringer JR (2006) Acute amphotericin B overdose. Ann Pharmacother 40:2254–2259

    Article  CAS  PubMed  Google Scholar 

  45. Wiwanitkit V (2006) Severe hypertension associated with the use of amphotericin B: an appraisal on the reported cases. J Hypertens 24:1445

    Article  CAS  PubMed  Google Scholar 

  46. Rodrigues CA, Yamamoto M, Arantes Ade M, Chauffaille Mde L, Colombo AL, Bordin JO (2006) Amphotericin B-induced severe hypertension in a young patient: case reportand review of the literature. Ren Fail 28:185–187

    Article  PubMed  Google Scholar 

  47. Walker RW, Rosenblum MK (1992) Amphotericin B associated leukoencephalopathy. Neurology 42:2005–2010

    Article  CAS  PubMed  Google Scholar 

  48. Barton CH, Palh M, Vaziri ND, Cesario T (1984) Renal magnesium wasting associated with amphotericin B therapy. Am J Med 77:471–474

    Article  CAS  PubMed  Google Scholar 

  49. Lucas da Silva PS, Iglesias SB, Waisberg J (2007) Hypokalemic rhabdomyolysis in a child due to amphotericin B therapy. Eur J Pediatr 166:169–171

    Article  PubMed  Google Scholar 

  50. Sutherland SM, Hong DK, Balagtas J, Gutierrez K, Dvorak CC, Sarwal M (2008) Liposomal amphotericin b associated with severe hyperphosphatemia. Pediatr Infect Dis J 27:77–79

    Article  PubMed  Google Scholar 

  51. Olin JL, Spooner LM (2006) Amphotericin B-associated hyperbilirubinemia: case report and review of the literature. Pharmacotherapy 26:1011–1017

    Article  PubMed  Google Scholar 

  52. Bicanic T, Bottomley C, Loyse A et al (2015) Toxicity of Amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob Agents Chemother 59:7224–7231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Day JN, Chau TT, Wolbers M et al (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hamill RJ, Sobel JD, El-Sadr W et al (2010) Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis 51:225–2329

    Article  CAS  PubMed  Google Scholar 

  55. Wingard JR, Kubilis P, Lee L et al (1999) Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 29:1402–1407

    Article  CAS  PubMed  Google Scholar 

  56. White MH, Bowden RA, Sandler ES et al (1998) Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis 27:296–302

    Article  CAS  PubMed  Google Scholar 

  57. Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162

    Article  CAS  PubMed  Google Scholar 

  58. Deray G (2002) Amphotericin B nephrotoxicity. J Antimicrob Chemoth 49(Suppl S1):37–41

    Article  CAS  Google Scholar 

  59. Bicanic T, Wood R, Meintjes G et al (2008) High-dose amphotericin B with flucytosine for the treatment of cryptococcal meningitis in HIV-infected patients: a randomized trial. Clin Infect Dis 47:123–130

    Article  CAS  PubMed  Google Scholar 

  60. Llanos A, Cieza J, Bernardo J et al (1991) Effect of salt supplementation on amphotericin B nephrotoxicity. Kidney Int 40:302–308

    Article  CAS  PubMed  Google Scholar 

  61. Stein R, Alexander J (1989) Sodium protects against nephrotoxicity in patients receiving amphotericin B. Am J Med Sci 298:299–304

    Article  CAS  PubMed  Google Scholar 

  62. Girmenia C, Cimino G, Di Cristofano F, Micozzi A, Gentile G, Martino P (2005) Effects of hydration with salt repletion on renal toxicity of conventional amphotericin B empirical therapy: a prospective study in patients with hematological malignancies. Support Care Cancer 13:987–992

    Article  PubMed  Google Scholar 

  63. Bahr NC, Rolfes MA, Musubire A et al (2014) Standardized electrolyte supplementation and fluid management improves survival during amphotericin therapy for cryptococcal meningitis in resource-limited settings. Open Forum Infect Dis 1(2):ofu070. doi:10.1093/ofid/ofu070

    Article  PubMed  PubMed Central  Google Scholar 

  64. Borro JM, Solé A, de la Torre M et al (2008) Efficiency and safety of inhaled amphotericin B lipid complex (Abelcet) in the prophylaxis of invasive fungal infections following lung transplantation. Transplant Proc 40:3090–3093

    Article  CAS  PubMed  Google Scholar 

  65. Rijnders BJ, Cornelissen JJ, Slobbe L et al (2008) Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: a randomized, placebo-controlled trial. Clin Infect Dis 46:1401–1408

    Article  CAS  PubMed  Google Scholar 

  66. Behre GF, Schwartz S, Lenz K et al (1995) Aerosol amphotericin B inhalations for prevention of invasive pulmonary aspergillosis in neutropenic cancer patients. Ann Hematol 71:287–291

    Article  CAS  PubMed  Google Scholar 

  67. Knechtel SA, Klepser ME (2007) Safety of aerosolized amphotericin B. Expert Opin Drug Saf 6:523–532

    Article  CAS  PubMed  Google Scholar 

  68. Andreucci M, Solomon R, Tasanarong A (2014) Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed Res Int 2014:741018

    PubMed  PubMed Central  Google Scholar 

  69. AmBisome (amphotericin B) liposome for injection, package insert. Astellas Pharma US, San Dimas, CA. Revised May 2012. https://www.astellas.us/docs/ambisome.pdf. Accessed 28 Oct 2016

  70. Viread (Tenofovir disoproxil fumarate) Package Insert. Gilead Sciences, Inc., Foster City, CA. Revised Feb 2016. http://gilead.com/~/media/files/pdfs/medicines/liver-disease/viread/viread_pi.pdf. Accessed 23 Sept 2016

  71. Retrovir (Zidovudine) Package Insert (2008) Glaxo SmithKline, Research Triangle Park, NC. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019910s033lbl.pdf. Accessed 23 Sept 2016

  72. Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL (1990) Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr 116:791–797

    Article  CAS  PubMed  Google Scholar 

  73. Benson JM, Nahata MC (1989) Pharmacokinetics of amphotericin B in children. Antimicrob Agents Chemother 33:1989–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koren G, Lau A, Klein J et al (1988) Pharmacokinetics and adverse effects of amphotericin B in infants and children. J Pediatr 113:559–563

    Article  CAS  PubMed  Google Scholar 

  75. Nath CE, McLachlan AJ, Shaw PJ, Gunning R, Earl JW (2001) Population pharmacokinetics of amphotericin B in children with malignant diseases. Br J Clin Pharmacol 52:671–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Starke JR, Mason EO Jr, Kramer WG, Kaplan SL (1987) Pharmacokinetics of amphotericin B in infants and children. J Infect Dis 155:766–774

    Article  CAS  PubMed  Google Scholar 

  77. Le J, Adler-Shohet FC, Nguyen C, Lieberman JM (2009) Nephrotoxicity associated with amphotericin B deoxycholate in neonates. Pediatr Infect Dis J 28:1061–1063

    Article  PubMed  Google Scholar 

  78. Van den Anker JN, van Popele NM, Sauer PJ (1995) Antifungal agents in neonatal systemic candidiasis. Antimicrob Agents Chemother 39:1391–1397

    Article  PubMed  PubMed Central  Google Scholar 

  79. Steinbach WJ (2005) Antifungal agents in children. Pediatr Clin N Am 52:895–915

    Article  Google Scholar 

  80. Federal Register (2008) 73:30832. https://www.gpo.gov/fdsys/pkg/FR-2008-05-29/pdf/E8-11806.pdf. Accessed 20 Sept 2016

  81. Abelcet (amphotericin B lipid complex injection), package insert. Enzon Pharmaceuticals, Inc., Bridgewater, NJ. Revised October 2010. http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=41233. Accessed 28 Oct 2016

  82. Ismail MA, Lerner SA (1982) Disseminated blastomycosis in a pregnant woman: review of amphotericin B usage during pregnancy. Am Rev Respir Dis 126:350–353

    CAS  PubMed  Google Scholar 

  83. McCoy MJ, Ellenberg JF, Killam AP (1980) Coccidioidomycosis complicating pregnancy. Am J Obstet Gynecol 137:739–740

    Article  CAS  PubMed  Google Scholar 

  84. Kuo D (1962) A case of torulosis of the central nervous system during pregnancy. Med J Aust 49:558–560

    PubMed  Google Scholar 

  85. Silberfarb PM, Sarosi GA, Tosh FE (1972) Cryptococcosis and pregnancy. Am J Obstet Gynecol 112:714–720

    Article  CAS  PubMed  Google Scholar 

  86. Curole DN (1981) Cryptococcal meningitis in pregnancy. J Reprod Med 26:317–319

    CAS  PubMed  Google Scholar 

  87. Harris RE (1966) Coccidioidomycosis complicating pregnancy. Report of 3 cases and review of the literature. Obstet Gynecol 28:401–405

    CAS  PubMed  Google Scholar 

  88. Smale LE, Waechter KG (1970) Dissemination of coccidioidomycosis in pregnancy. Am J Obstet Gynecol 107(3):356–361

    Article  CAS  PubMed  Google Scholar 

  89. Hadsall FJ, Acquarelli MJ (1973) Disseminated coccidioidomycosis presenting as facial granulomas in pregnancy: a report of two cases and a review of the literature. Laryngoscope 83:51–58

    Article  CAS  PubMed  Google Scholar 

  90. Hager H, Welt SI, Cardasis JP, Alvarez S (1988) Disseminated blastomycosis in a pregnant woman successfully treated with amphotericin-B. A case report. J Reprod Med 33:485–488

    CAS  PubMed  Google Scholar 

  91. Neiberg AD, Mavromatis F, Dyke J, Fayyad A (1977) Blastomyces dermatitidis treated during pregnancy: report of a case. Am J Obstet Gynecol 128:911–912

    Article  CAS  PubMed  Google Scholar 

  92. Philpot CR, Lo D (1972) Cryptococcal meningitis in pregnancy. Med J Aust 2:1005–1007

    CAS  PubMed  Google Scholar 

  93. Aitken GW, Symonds EM (1962) Cryptococcal meningitis in pregnancy treated with amphotericin B. A case report. J Obstet Gynaecol Br Emp 69:677–679

    Article  CAS  PubMed  Google Scholar 

  94. Youssef D, Raval B, El-Abbassi A, Patel P (2013) Pulmonary blastomycosis during pregnancy: case report and review of the literature. Tenn Med 106:37–39

    PubMed  Google Scholar 

  95. Nayak SU, Talwani R, Gilliam B, Taylor G, Ghosh M (2011) Cryptococcal meningitis in an HIV-positive pregnant woman. J Int Assoc Physicians AIDS Care (Chic) 10:79–82

    Article  Google Scholar 

  96. Crum NF, Ballon-Landa G (2006) Coccidioidomycosis in pregnancy: case report and review of the literature. Am J Med 119:993.e11–993.e17

    Article  Google Scholar 

  97. Ilett KF, Kristensen JH (2005) Drug use and breastfeeding. Expert Opin Drug Saf 4:745–768

    Article  CAS  PubMed  Google Scholar 

  98. Mueller M, Balasegaram M, Koummuki Y, Ritmeijer K, Santana MR, Davidson R (2006) A comparison of liposomal amphotericin B with sodium stibogluconate for the treatment of visceral leishmaniasis in pregnancy in Sudan. J Antimicrob Chemother 58:811–815

    Article  CAS  PubMed  Google Scholar 

  99. Pipitone MA, Gloster HM (2005) A case of blastomycosis in pregnancy. J Am Acad Dermatol 53:740–741

    Article  PubMed  Google Scholar 

  100. Dean JL, Wolf JE, Ranzini AC, Laughlin MA (1994) Use of amphotericin B during pregnancy: case report and review. Clin Infect Dis 18:364–368

    Article  CAS  PubMed  Google Scholar 

  101. Adler-Moore JP, Gangneux JP, Pappas PG (2016) Comparison between liposomal formulations of amphotericin B. Med Mycol 54:223–231

    Article  PubMed  Google Scholar 

  102. Olson JA, Adler-Moore JP, Jensen GM, Schwartz J, Dignani MC, Proffitt RT (2008) Comparison of the physicochemical, antifungal, and toxic properties of two liposomal Amphotericin B Products. Antimicrob Agents Chemother 52:259–268

    Article  CAS  PubMed  Google Scholar 

  103. Wingard JR, White MH, Anaissie E, Raffalli J, Goodman J, Arrieta A, L Amph/ABLC Collaborative Study Group (2000) A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis 31:1155–1163

    Google Scholar 

  104. Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S (2008) Amphotericin B formulations and drug targeting. J Pharm Sci 97:2405–2425

    Article  CAS  PubMed  Google Scholar 

  105. Coukell AJ, Brogden RN (1998) Liposomal amphotericin B: therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs 55:585–612

    Article  CAS  PubMed  Google Scholar 

  106. Vogelsinger H, Weiler S, Djanani A et al (2006) Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. Antimicrob Chemother 57:1153–1160

    Article  CAS  Google Scholar 

  107. Perkins WR, Minchey SR, Boni LT et al (1992) Amphotericin B phospholipid interactions responsible for reduced mammalian cell toxicity. Biochim Biophys Acta 1107:271–282

    Article  CAS  PubMed  Google Scholar 

  108. Adler-Moore J (1994) AmBisome targeting to fungal infections. Bone Marrow Transplant 14(Suppl 5):S3–S7

    PubMed  Google Scholar 

  109. Stone NR, Bicanic T, Salim R, Hope W (2016) Liposomal Amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76:485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Latour JF, Fuhrmann C, Lagallarde C, Loreuil F (1996) Amphotericin B intralipid formulation: stability and particle size. J Antimicrob Chemother 37:1165–1169

    Article  PubMed  Google Scholar 

  111. Mehta J (1997) Do variations in molecular structure affect the clinical efficacy and safety of lipid-based amphotericin B preparations? Leuk Res 21:183–188

    Article  CAS  PubMed  Google Scholar 

  112. Boswell GW, Buell D, Bekersky I (1998) AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 38:583–592

    Article  CAS  PubMed  Google Scholar 

  113. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Felton T, Troke PF, Hope WW (2014) Tissue penetration of antifungal agents. Clin Microbiol Rev 27:68–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wade RL, Chaudhari P, Natoli JL, Taylor RJ, Nathanson BH, Horn DL (2013) Nephrotoxicity and other adverse events among inpatients receiving liposomal amphotericin B or amphotericin B lipid complex. Diagn Microbiol Infect Dis 76:361–367

    Article  CAS  PubMed  Google Scholar 

  116. Ashley ESD, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43:S28–S39

    Article  Google Scholar 

  117. Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27:603–618

    Article  CAS  PubMed  Google Scholar 

  118. Groll AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 44:343–499

    Article  CAS  PubMed  Google Scholar 

  119. Groll AH, Giri N, Petraitis V et al (2000) Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 182:274–282

    Article  CAS  PubMed  Google Scholar 

  120. Dupont B (2002) Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother 49(Suppl 1):31–36

    Article  CAS  PubMed  Google Scholar 

  121. Kethireddy S, Andes D (2007) CNS pharmacokinetics of antifungal agents. Expert Opin Drug Metab Toxicol 3:573–581

    Article  CAS  PubMed  Google Scholar 

  122. Strenger V, Meinitzer A, Donnerer J et al (2014) Amphotericin B transfer to CSF following intravenous administration of liposomal amphotericin B. J Antimicrob Chemother 69:2522–2526

    Article  CAS  PubMed  Google Scholar 

  123. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37:415–425

    Article  CAS  PubMed  Google Scholar 

  124. Richard JH, Amphotericin B (2013) Formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934

    Article  CAS  Google Scholar 

  125. Montagna MT, Lovero G, Coretti C et al (2014) In vitro activities of amphotericin B deoxycholate and liposomal amphotericin B against 604 clinical yeast isolates. J Med Microbiol 63:1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Johnson EM, Ojwang JO, Szekely A, Wallace TL, Warnock DW (1998) Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations. Antimicrob Agents Chemother 42:1412–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Carrillo-Muñoz AJ, Quindós G, Tur C et al (1999) In-vitro antifungal activity of liposomal nystatin in comparison with nystatin, amphotericin B cholesteryl sulphate, liposomal amphotericin B, amphotericin B lipid complex, amphotericin B desoxycholate, fluconazole and itraconazole. J Antimicrob Chemother 44:397–401

    Article  PubMed  Google Scholar 

  128. Clark JM, Whitney RR, Olsen SJ et al (1991) Amphotericin B lipid complex therapy of experimental fungal infections in mice. Antimicrob Agents Chemother 35:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hostetler JS, Clemons KV, Hanson LH, Stevens DA (1992) Efficacy and safety of amphotericin B colloidal dispersion compared with those of amphotericin B deoxycholate suspension for treatment of disseminated murine cryptococcosis. Antimicrob Agents Chemother 36:2656–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pahls S, Schaffner A (1994) Comparison of the activity of free and liposomal amphotericin B in vitro and in a model of systemic and localized murine candidiasis. J Infect Dis 169:1057–1061

    Article  CAS  PubMed  Google Scholar 

  131. Clark AD, McKendrick S, Tansey PJ, Franklin IM, Chopra R (1998) A comparative analysis of lipid-complexed and liposomal amphotericin B preparations in haematological oncology. Br J Haematol 103:198–204

    Article  CAS  PubMed  Google Scholar 

  132. Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55:809–818

    Article  CAS  PubMed  Google Scholar 

  133. Hiemenz JW, Walsh TJ (1996) Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis 22(Suppl 2):S133–S144

    Article  CAS  PubMed  Google Scholar 

  134. Mehta J, Kelsey S, Chu P et al (1997) Amphotericin B lipid complex (ABLC) for the treatment of confirmed or presumed fungal infections in immunocompromised patients with hematologic malignancies. Bone Marrow Transplant 20:39–43

    Article  CAS  PubMed  Google Scholar 

  135. Saliba F, Dupont B (2008) Renal impairment and amphotericin B formulations in patients with invasive fungal infections. Med Mycol 46:97–112

    Article  CAS  PubMed  Google Scholar 

  136. Sharkey PK, Graybill JR, Johnson ES et al (1996) Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis 22:315–321

    Article  CAS  PubMed  Google Scholar 

  137. Walsh TJ, Hiemenz JW, Seibel NL et al (1998) Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 26:1383–1396

    Article  CAS  PubMed  Google Scholar 

  138. Walsh TJ, Finberg RW, Arndt C (1999) at al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 340:764–771

    Article  CAS  PubMed  Google Scholar 

  139. Leenders AC, Daenen S, Jansen RL et al (1998) Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol 103:205–212

    Article  CAS  PubMed  Google Scholar 

  140. Leenders AC, Reiss P, Portegies P et al (1997) Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS 11:1463–1471

    Article  CAS  PubMed  Google Scholar 

  141. Johnson PC, Wheat LJ, Cloud GA, et al, U.S. National Institute of Allergy and Infectious Diseases Mycoses Study Group (2002) Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann Intern Med 137:105–109

    Google Scholar 

  142. Kauffman CA, Bustamante B, Chapman SW, Pappas PG, Infectious Diseases Society of America (2007) Clinical practice guidelines for the management of sporotrichosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 45:1255–1265

    Google Scholar 

  143. Bergman SJ, Tyagi I, Ronald K (2010) Antifungal dosing in critically ill patients. Curr Fungal Infect Rep 4:78–86

    Article  Google Scholar 

  144. Würthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ (2005) Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother 49:5092–5098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12:308–329

    Article  CAS  PubMed  Google Scholar 

  146. Barrett JP, Vardulaki KA, Conlon C, et al., Amphotericin B Systematic Review Study Group (2003) A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther 25:1295–1320

    Google Scholar 

  147. Martino R (2004) Efficacy, safety and cost-effectiveness of Amphotericin B Lipid Complex (ABLC): a review of the literature. Curr Med Res Opin 20:485–504

    Article  CAS  PubMed  Google Scholar 

  148. Ueda S, Miyamoto S, Kaida K et al (2016) Safety and efficacy of treatment with liposomal amphotericin B in elderly patients at least 65 years old with hematological diseases. J Infect Chemother 22:287–291

    Article  CAS  PubMed  Google Scholar 

  149. Roden MM, Nelson LD, Knudsen TA et al (2003) Triad of acute infusion-related reactions associated with liposomal amphotericin B: analysis of clinical and epidemiological characteristics. Clin Infect Dis 36:1213–1220

    Article  CAS  PubMed  Google Scholar 

  150. Rex JH, Stevens DA (2015) Drugs active against fungi, pneumocystis and microsporidia. In: Mandell, Douglas, Bennett’s principles and practice of infectious diseases, 8th edn. Elsevier Saunders, Philadelphia, PA, pp 485–490

    Google Scholar 

  151. Peyton LR, Gallagher S, Hashemzadeh M (2015) Triazole antifungals: a review. Drugs Today 51:705–718

    CAS  PubMed  Google Scholar 

  152. National Center for Biotechnology Information. PubChem Compound Database; CID:55283. https://pubchem.ncbi.nlm.nih.gov/compound/itraconazole. Accessed 29 Jan 2017

  153. National Center for Biotechnology Information. PubChem Compound Database; CID:3365. https://pubchem.ncbi.nlm.nih.gov/compound/fluconazole. Accessed 29 Jan 2017

  154. National Center for Biotechnology Information. PubChem Compound Database; CID: 468595. https://pubchem.ncbi.nlm.nih.gov/compound/posaconazole. Accessed 29 Jan 2017

  155. National Center for Biotechnology Information. PubChem Compound Database; CID:71616. https://pubchem.ncbi.nlm.nih.gov/compound/voriconazole. Accessed 29 Jan 2017

  156. National Center for Biotechnology Information. PubChem Compound Database; CID: 6918485. https://pubchem.ncbi.nlm.nih.gov/compound/isavuconazole. Accessed 29 Jan 2017

  157. Mast N, Zheng W, Stout CD, Pikuleva IA (2013) Antifungal azoles: structural insights into undesired tight binding to cholesterol-metabolizing CYP46A1. Mol Pharmacol 84:86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shyadehi AZ, Lamb DC, Kelly SL et al (1996) The mechanism of the acyl-carbon bond cleavage reaction catalyzed by recombinant sterol 14 alpha-demethylase of Candida albicans (other names are: lanosterol 14 alpha-demethylase, P-45014DM, and CYP51). J Biol Chem 271:12445–12450

    Article  CAS  PubMed  Google Scholar 

  159. Rybak JM, Marx KR, Nishimoto AT, Rogers PD (2015) Isavuconazole: pharmacology pharmacodynamics, and current clinical experience with a new triazole antifungal agent. Pharmacotherapy 35:1037–1051

    Article  CAS  PubMed  Google Scholar 

  160. Courtney R, Wexler D, Radwanski E, Lim J, Laughlin M (2004) Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol 57:218–222

    Article  PubMed  PubMed Central  Google Scholar 

  161. Dekkers BG, Bakker M, van der Elst KC et al (2016) Therapeutic drug monitoring of posaconazole: an update. Curr Fungal Infect Rep 10:51–61

    Article  PubMed  PubMed Central  Google Scholar 

  162. Moriyama B, Kadri K, Henning SA, Danner RL, Penzak SR, Walsh TJ (2015) Therapeutic drug monitoring and genotypic screening in the clinical use of voriconazole. Curr Fungal Infect Rep 9:74–87

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pascual A, Calandra T, Bolay S, Buclin T, Blle J, Marchetti O (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46:201–211

    Article  CAS  PubMed  Google Scholar 

  164. Brüggemann RJ, Aarnoutse RE (2015) Fundament and prerequisites for the application of an antifungal TDM service. Curr Fungal Infect Rep 9:122–129

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW (2014) Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 69:1162–1176

    Article  CAS  PubMed  Google Scholar 

  166. Wiederhold NP, Pennick GJ, Dorsey SA et al (2014) A reference laboratory experience of clinically achievable voriconazole, posaconazole, and itraconazole concentrations within the bloodstream and cerebral spinal fluid. Antimicrob Agents Chemother 58:424–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Nagappan V, Deresinski S (2007) Reviews of anti-infective agents. Posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis 45:1610–1617

    Article  CAS  PubMed  Google Scholar 

  168. Thompson GR 3rd, Rendon A, Dos Santos RR et al (2016) Isavuconazole treatment of cryptococcosis and dimorphic mycoses. Clin Infect Dis 63:356–362

    Article  PubMed  PubMed Central  Google Scholar 

  169. Parker JE, Warrilow AG, Price CL, Mullins JG, Kelly DE, Kelly SL (2014) Resistance to antifungals that target CYP51. J Chem Biol 7:143–161

    Article  PubMed  PubMed Central  Google Scholar 

  170. Cuenca-Estrella M (2014) Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect 20(Suppl 6):54–59

    Article  CAS  PubMed  Google Scholar 

  171. Alastruey-Izquierdo A, Melhem MS, Bonfietti LX, Rodriguez-Tudela JL (2015) Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop Sao Paulo 57(Suppl 19):57–64

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wilson DT, Dimondi VP, Johnson SW, Jones TM, Drew RH (2016) Role of isavuconazole in the treatment of invasive fungal infections. Ther Clin Risk Manag 12:1197–1206

    Article  PubMed  PubMed Central  Google Scholar 

  173. Barr VO, Zdyb EG, Postelnick M (2015) The clinical significance of azole antifungals’ effects on the liver and transaminase levels. Curr Fungal Infect Rep 9:190–195

    Article  Google Scholar 

  174. Feist A, Lee R, Osborne S, Lane J, Yung G (2012) Increased incidence of cutaneous squamous cell carcinoma in lung transplant recipients taking long-term voriconazole. J Heart Lung Transplant 31:1177–1181

    Article  PubMed  Google Scholar 

  175. Zwald FO, Spratt M, Lemos BD et al (2012) Duration of voriconazole exposure: an independent risk factor for skin cancer after lung transplantation. Dermatol Surg 38:1369–1374

    Article  CAS  PubMed  Google Scholar 

  176. Nix DE (2014) Cardiotoxicity induced by antifungal drugs. Curr Fungal Infect Rep 8:129–138

    Article  Google Scholar 

  177. Panos G, Velissaris D, Karamouzos V, Matzaroglou C, Tyllianakis M (2016) Long QT syndrome leading to multiple cardiac arrests after posaconazole administration in an immune-compromised patient with sepsis: an unusual case report. Am J Case Reports 17:295–300

    Article  Google Scholar 

  178. Brüggemann RJM, Alffenaar JC, Blijlevens NMA et al (2009) Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 48:1441–1458

    Article  PubMed  CAS  Google Scholar 

  179. Gubbins PO, Heldenbrand S (2009) Clinically relevant drug interactions of current antifungal agents. Mycoses 53:95–113

    Article  PubMed  CAS  Google Scholar 

  180. Miceli MH, Kauffman CA (2015) Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis 61:1558–1565

    Article  CAS  PubMed  Google Scholar 

  181. Vadlapatla RK, Patel M, Paturi DK, Pal D, Mitra AK (2014) Clinically relevant drug-drug interactions between antiretrovirals and antifungals. Expert Opin Drug Metab Toxicol 10:561–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nivoix Y, Levêque D, Herbrecht R, Koffel JC, Beretz L, Ubeaud-Sequier G (2008) The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmacokinet 47:779–792

    Article  CAS  PubMed  Google Scholar 

  183. Lempers VJC, Martial LC, Schreuder MF et al (2015) Drug-interactions of azole antifungals with selected immunosuppressants in transplant patients: strategies for optimal management in clinical practice. Curr Op Pharmacol 24:38–44

    Article  CAS  Google Scholar 

  184. Hohmann C, Kang EM, Jancel T (2010) Rifampin and posaconazole coadministration leads to decreased serum posaconazole concentrations. Clin Infect Dis 50:939–940

    Article  PubMed  Google Scholar 

  185. Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK Jr, Capparelli EV (2014) Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 74:891–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ramos-Martín V, O'Connor O, Hope W (2015) Clinical pharmacology of antifungal agents in pediatrics: children are not small adults. Curr Opin Pharmacol 24:128–134

    Article  PubMed  CAS  Google Scholar 

  187. Goldman JM, Abdel-Rahman SM (2016) Pharmacokinetic considerations in treating invasive pediatric fungal infections. Exp Op Drug Metabol Toxicol 12:645–655

    Article  CAS  Google Scholar 

  188. Drogouti E, Pana ZD, Tragiannidis A, Hempel G, Groll A (2015) Clinical pharmacology of itraconazole in children and adolescents. Curr Fungal Infect Rep 9:65–73

    Article  Google Scholar 

  189. Dokos C, Pieper S, Lehrnbecher T, Groll AH (2012) Pharmacokinetics, safety and efficacy of voriconazole in pediatric patients: an update. Curr Fungal Infect Rep 6:121–126

    Article  Google Scholar 

  190. Pilmis B, Jullien V, Sobel J, Lecuit M, Lortholary O, Charlier C (2015) Antifungal drugs during pregnancy: an updated review. J Antimicrob Chemother 70:14–22

    Article  CAS  PubMed  Google Scholar 

  191. Nair AS (2014) Safety of intravenous voriconazole in renal failure. Med J DY Patil Univ 7:105–107

    Article  Google Scholar 

  192. Payne KD, Hall RG (2016) Dosing of antifungal agents in obese people. Expert Rev Anti-Infect Ther 14:257–267

    Article  CAS  PubMed  Google Scholar 

  193. Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373:1445–1456

    Article  CAS  PubMed  Google Scholar 

  194. Wang JF, Xue Y, Zhu XB, Fan H (2015) Efficacy and safety of echinocandins versus triazoles for the prophylaxis and treatment of fungal infections: a meta-analysis of RCTs. Eur J Clin Microbiol Infect Dis 34:651–659

    Article  PubMed  CAS  Google Scholar 

  195. Pappas PG, Kauffman CA, Andes D, et al, Infectious Diseases Society of America (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535

    Google Scholar 

  196. Andes DR, Safdar N, Baddley JW,et al, Mycoses Study Group (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54:1110–1122

    Google Scholar 

  197. Denning DW, Ribaud P, Milpied N et al (2002) Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 34:563–571

    Article  CAS  PubMed  Google Scholar 

  198. Herbrecht R, Denning DW, Patterson TF, et al, Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415

    Google Scholar 

  199. Perfect JR, Marr KA, Walsh TJ et al (2003) Voriconazole treatment for less-common, emerging, or refractory fungal infections. Clin Infect Dis 36:1122–1131

    Article  CAS  PubMed  Google Scholar 

  200. Patterson TF, Boucher HW, Herbrecht R,et al, European Organization for Research and Treatment of Cancer (EORTC) Invasive Fungal Infections Group (IFIG); Pfizer Global Aspergillus Study Group (2005) Strategy of following voriconazole versus amphotericin B therapy with other licensed antifungal therapy for primary treatment of invasive aspergillosis: impact of other therapies on outcome. Clin Infect Dis 41:1448–1452

    Google Scholar 

  201. Singh N, Limaye AP, Forrest G et al (2006) Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study. Transplantation 81:320–326

    Article  CAS  PubMed  Google Scholar 

  202. Panackal AA, Parisini E, Proschan M (2014) Salvage combination antifungal therapy for acute invasive aspergillosis may improve outcomes: a systematic review and meta-analysis. Int J Infect Dis 28:80–94

    Article  PubMed  PubMed Central  Google Scholar 

  203. Marr KA, Schlamm HT, Herbrecht R et al (2015) Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med 162:81–89

    Article  PubMed  Google Scholar 

  204. Panackal AA (2016) Combination antifungal therapy for invasive aspergillosis revisited. Med Mycol Open Access 2(2). pii: 12

    Google Scholar 

  205. Ullmann AJ, Cornely OA, Burchardt A et al (2006) Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob Agents Chemother 50:658–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Krishna G, Moton A, Ma L, Medlock MM, McLeod J (2009) Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob Agents Chemother 53:958–966

    Article  CAS  PubMed  Google Scholar 

  207. Zoller E, Valente C, Baker K, Klepser ME (2010) Development, clinical utility, and place in therapy of posaconazole for prevention and treatment of invasive fungal infections. Drug Des Devel Ther 4:299–311

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Percival KM, Bergman SJ (2014) Update on posaconazole pharmacokinetics: comparison of old and new formulations. Curr Fungal Infect Rep 8:139–145

    Article  Google Scholar 

  209. Wiederhold NP (2015) Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections. Clin Pharmacol 8:1–8

    PubMed  PubMed Central  Google Scholar 

  210. Cornely OA, Maertens J, Winston DJ et al (2007) Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med 356:348–359

    Article  CAS  PubMed  Google Scholar 

  211. Bertz H, Drognitz K, Lübbert M (2014) No difference between posaconazole and fluconazole antifungal prophylaxis and mycological diagnostics except costs in patients undergoing AML chemotherapy: a 1-year “real-life” evaluation. Ann Hematol 93:165–167

    Article  PubMed  Google Scholar 

  212. Walsh TJ, Raad I, Patterson TF et al (2007) Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis 44:2–12

    Article  CAS  PubMed  Google Scholar 

  213. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01782131?term=posaconazole+aspergillosis&rank=1. Accessed 17 Nov 2016

  214. Greenberg RN, Mullane K, van Burik JA et al (2006) Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother 50:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Chitasombat MN, Kontoyiannis DP (2016) Treatment of mucormycosis in transplant patients: role of surgery and of old and new antifungal agents. Curr Opin Infect Dis 29:340–345

    Article  CAS  PubMed  Google Scholar 

  216. Durani U, Tosh PK, Barreto JN, Estes LL, Jannetto PJ, Tande AJ (2015) Retrospective comparison of posaconazole levels in patients taking the delayed-release tablet versus the oral suspension. Antimicrob Agents Chemother 59:4914–4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Riley TT, Muzny CA, Swiatlo E, Legendre DP (2016) Breaking the mold: a review of mucormycosis and current pharmacological treatment options. Ann Pharmacother 50:747–757

    Article  CAS  PubMed  Google Scholar 

  218. Maertens JA, Raad II, Marr KA et al (2016) Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet 387:760–769

    Article  CAS  PubMed  Google Scholar 

  219. Falci DR, Pasqualotto AC (2013) Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect Drug Resist 6:163–174

    PubMed  PubMed Central  Google Scholar 

  220. Carrillo-Muñoz AJ, Giusiano G, Arechavala A et al (2015) Clinical usefulness of triazole derivatives in the management of fungal infections. Rev Esp Quimioter 28:169–182

    PubMed  Google Scholar 

  221. Gupta AK, Leonardi C, Stolz RR, Pierce PF, Conetta B, Ravuconazole Onychomycosis Group (2005) A phase I/II randomized, double-blind, placebo controlled, dose-ranging study evaluating the efficacy, safety and pharmacokinetics of ravuconazole in the treatment of onychomycosis. J Eur Acad Dermatol Venereal 19:437–443

    Google Scholar 

  222. Jo Siu WJ, Tatsumi Y, Senda H et al (2013) Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother 57:1610–1616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 48:471

    Article  CAS  PubMed  Google Scholar 

  225. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142

    Article  CAS  PubMed  Google Scholar 

  226. Lewis RE. Pharmacology of echinocandins. Up to date. Literature review current through: May 2016. This topic last updated: Feb 05, 2016

    Google Scholar 

  227. National Center for Biotechnology Information. PubChem Compound Database; CID: 2826718. https://pubchem.ncbi.nlm.nih.gov/compound/caspofungin. Accessed 29 Jan 2017

  228. National Center for Biotechnology Information. PubChem Compound Database; CID: 477468. https://pubchem.ncbi.nlm.nih.gov/compound/micafungin. Accessed 29 Jan 2017

  229. National Center for Biotechnology Information. PubChem Compound Database; CID: 166548. https://pubchem.ncbi.nlm.nih.gov/compound/anidulafungin. Accessed 29 Jan 2017

  230. Fleet GH (1985) Composition and structure of yeast cell walls. Curr Top Med Mycol 1:24

    Article  CAS  PubMed  Google Scholar 

  231. Bowman JC, Hicks PS, Kurtz MB et al (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46(9):3001–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Marr KA, Boeckh M, Carter RA et al (2004) Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis 39(6):797–802

    Article  CAS  PubMed  Google Scholar 

  233. Lamaris GA, Lewis RE, Chamilos G et al (2008) Caspofungin-mediated beta-glucan unmasking and enhancement of human polymorphonuclear neutrophil activity against Aspergillus and non-Aspergillus hyphae. J Infect Dis 198:186

    Article  CAS  PubMed  Google Scholar 

  234. Eschenauer G, Depestel DD, Carver PL (2007) Comparison of echinocandin antifungals. Ther Clin Risk Manag 3(1):71–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kauffman CA, Carver PL (2008) Update on echinocandin antifungals. Semin Respir Crit Care Med 29(2):211–219

    Article  PubMed  Google Scholar 

  236. Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43(S1):S28–S39

    Article  CAS  Google Scholar 

  237. Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43:1647–1657

    Article  CAS  PubMed  Google Scholar 

  238. Azanza Perea JR (2016) Echinocandins: applied pharmacology. Rev Iberoam Micol 33(3):140–144

    Article  PubMed  Google Scholar 

  239. Theuretzbacher U (2004) Pharmacokinetics/pharmacodynamics of echinocandins. Eur J Clin Microbiol Infect Dis 23:805

    Article  CAS  PubMed  Google Scholar 

  240. Cappelletty D, Eiselstein-McKitrick K (2007) The echinocandins. Pharmacotherapy 27:369

    Article  CAS  PubMed  Google Scholar 

  241. Pfaller MA, Boyken L, Hollis RJ et al (2008) In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol 46:150

    Article  CAS  PubMed  Google Scholar 

  242. Barchiesi F, Spreghini E, Tomassetti S et al (2006) Effects of caspofungin against Candida guilliermondii and Candida parapsilosis. Antimicrob Agents Chemother 50(8):2719–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Espinel-Ingroff A (1998) Comparison of in vitro activities of the new triazole Sch56592 and the echinocandins mk-0991 (l-743,872) and ly303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 36(10):2950–2956

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Nakai T, Uno J, Otomo K et al (2002) In vitro activity of FK463, a novel lipopeptide antifungal agent, against a variety of clinically important molds. Chemotherapy 48(2):78–81

    Article  CAS  PubMed  Google Scholar 

  245. Messer SA, Kirby JT, Sader HS et al (2004) Initial results from a longitudinal international surveillance programme for anidulafungin (2003). J Antimicrob Chemother 54(6):1051–1056

    Article  CAS  PubMed  Google Scholar 

  246. Kirkpatrick WR, Perea S, Coco BJ et al (2002) Efficacy of caspofungin alone and in combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother 46(8):2564–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Diekema DJ, Messer SA, Hollis RJ et al (2003) Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol 41(8):3623–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Almyroudis NG, Sutton DA, Fothergill AW et al (2007) In vitro susceptibilities of 217 clinical isolates of zygomycetes to conventional and new antifungal agents. Antimicrob Agents Chemother 51(7):2587–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Cuenca-Estrella M, Ruiz-Diez B, Martinez-Suarez JV et al (1999) Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother 43(1):149–151

    Article  CAS  PubMed  Google Scholar 

  250. Tawara S, Ikeda F, Maki K et al (2000) In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob Agents Chemother 44:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kahn JN, Hsu MJ, Racine F et al (2006) Caspofungin susceptibility in Aspergillus and non-Aspergillus molds: inhibition of glucan synthase and reduction of beta-D-1,3 glucan levels in culture. Antimicrob Agents Chemother 50:2214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Ito M, Nozu R, Kuramochi T et al (2000) Prophylactic effect of FK463, a novel antifungal lipopeptide, against Pneumocystis carinii infection in mice. Antimicrob Agents Chemother 44:2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Schmatz DM, Powles M, McFadden DC et al (1991) Treatment and prevention of Pneumocystis carinii pneumonia and further elucidation of the P. carinii life cycle with 1,3-beta-glucan synthesis inhibitor L-671,329. J Protozool 38:151S

    CAS  PubMed  Google Scholar 

  254. Ramage G, VandeWalle K, Bachmann SP et al (2002) In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother 46:3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kuhn DM, George T, Chandra J et al (2002) Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46:1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Marcos-Zambrano LJ, Escribano P, Bouza E, Guinea J (2016) Comparison of the antifungal activity of micafungin and amphotericin B against Candida tropicalis biofilms. J Antimicrob Chemother 71(9):2498–2501

    Article  CAS  PubMed  Google Scholar 

  257. Pham CD, Iqbal N, Bolden CB et al (2014) Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother 58:4690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Perlin DS, Shor E, Zhao Y (2015) Update on antifungal drug resistance. Curr Clin Microbiol Rep 2(2):84–95

    Article  PubMed  PubMed Central  Google Scholar 

  259. Zimbeck AJ, Iqbal N, Ahlquist AM et al (2010) FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother 54:5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kofteridis DP, Lewis RE, Kontoyiannis DP (2010) Caspofungin-non-susceptible Candida isolates in cancer patients. J Antimicrob Chemother 65:293

    Article  CAS  PubMed  Google Scholar 

  261. Alexander BD, Johnson MD, Pfeiffer CD et al (2013) Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56:1724

    Article  PubMed  PubMed Central  Google Scholar 

  262. Pfaller MA, Castanheira M, Lockhart SR et al (2012) Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50(4):1199–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Naicker SD, Magobo RE, Zulu TG et al (2016) Two echinocandin-resistant Candida glabrata FKS mutants from South Africa. Med Mycol Case Rep 11:24–26

    Article  PubMed  PubMed Central  Google Scholar 

  264. Tan TY, Hsu LY, Alejandria MM et al (2016) Antifungal susceptibility of invasive Candida bloodstream isolates from the Asia-Pacific region. Med Mycol 54(5):471–477

    Article  PubMed  Google Scholar 

  265. Beyda ND, John J, Kilic A et al (2014) FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia. Clin Infect Dis 59:819

    Article  CAS  PubMed  Google Scholar 

  266. Wang E, Farmakiotis D, Yang D et al (2015) The ever-evolving landscape of candidaemia in patients with acute leukaemia: non-susceptibility to caspofungin and multidrug resistance are associated with increased mortality. J Antimicrob Chemother 70:2362

    Article  CAS  PubMed  Google Scholar 

  267. Imbert S, Castain L, Pons A et al (2016) Discontinuation of echinocandin and azole treatments led to the disappearance of an FKS alteration but not azole resistance during clonal Candida glabrata persistent candidemia. Clin Microbiol Infect 22(10):891

    Article  PubMed  Google Scholar 

  268. van Burik JA, Ratanatharathorn V, Stepan DE et al (2004) Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis 39(10):1407–1416

    Article  PubMed  Google Scholar 

  269. Walsh TJ, Teppler H, Donowitz GR et al (2004) Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med 351(14):1391–1402

    Article  CAS  PubMed  Google Scholar 

  270. Reboli AC, Rotstein C, Pappas PG et al (2007) Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 356(24):2472–2482

    Article  CAS  PubMed  Google Scholar 

  271. Mora-Duarte J, Betts R, Rotstein C et al (2002) Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347(25):2020–2029

    Article  CAS  PubMed  Google Scholar 

  272. Villanueva A, Gotuzzo E, Arathoon EG et al (2002) A randomized double-blind study of caspofungin versus fluconazole for the treatment of esophageal candidiasis. Am J Med 113(4):294–299

    Article  CAS  PubMed  Google Scholar 

  273. de Wet NT, Bester AJ, Viljoen JJ et al (2005) A randomized, double blind, comparative trial of micafungin (FK463) vs. fluconazole for the treatment of oesophageal candidiasis. Aliment Pharmacol Ther 21(7):899–907

    Article  PubMed  CAS  Google Scholar 

  274. de Wet N, Llanos-Cuentas A, Suleiman J et al (2004) A randomized, double-blind, parallel-group, dose-response study of micafungin compared with fluconazole for the treatment of esophageal candidiasis in HIV-positive patients. Clin Infect Dis 39(6):842–849

    Article  PubMed  Google Scholar 

  275. Villanueva A, Arathoon EG, Gotuzzo E et al (2001) A randomized double-blind study of caspofungin versus amphotericin for the treatment of Candidal esophagitis. Clin Infect Dis 33(9):1529–1535

    Article  CAS  PubMed  Google Scholar 

  276. Krause DS, Simjee AE, van Rensburg C et al (2004) A randomized, double-blind trial of anidulafungin versus fluconazole for the treatment of esophageal candidiasis. Clin Infect Dis 39(6):770–775

    Article  CAS  PubMed  Google Scholar 

  277. Arathoon EG, Gotuzzo E, Noriega LM et al (2002) Randomized, double-blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiases. Antimicrob Agents Chemother 46(2):451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Aliff TB, Maslak PG, Jurcic JG et al (2003) Refractory Aspergillus pneumonia in patients with acute leukemia: successful therapy with combination caspofungin and liposomal amphotericin. Cancer 97(4):1025–1032

    Article  CAS  PubMed  Google Scholar 

  279. Maertens J, Raad I, Petrikkos G et al (2004) Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis 39(11):1563–1571

    Article  CAS  PubMed  Google Scholar 

  280. Maertens J, Glasmacher A, Herbrecht R et al (2006) Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis. Cancer 107(12):2888–2897

    Article  CAS  PubMed  Google Scholar 

  281. Kontoyiannis DP, Hachem R, Lewis RE et al (2003) Efficacy and toxicity of caspofungin in combination with liposomal amphotericin B as primary or salvage treatment of invasive aspergillosis in patients with hematologic malignancies. Cancer 98(2):292–299

    Article  CAS  PubMed  Google Scholar 

  282. Grau S, Luque S, Echeverría-Esnal D et al (2016) Urinary micafungin levels are sufficient to treat urinary tract infections caused by Candida spp. Int J Antimicrob Agents 48(2):212–214

    Article  CAS  PubMed  Google Scholar 

  283. Cancidas (caspofungin acetate for injection). Highlights of prescribing information, revised April 2016. www.merck.com/product/usa/pi_circulars/c/cancidas/cancidas_pi.pdf. Accessed 15 Jan 2017

  284. Mycamine (micafungin sodium for injection). Highlights of prescribing information, revised August 2016. www.astellas.us/docs/mycamine.pdf. Accessed 15 Jan 2017

  285. Eraxis (Anidulafungin for injection). Highlights of prescribing information, revised July 2012. www.accessdata.fda.gov/drugsatfda_docs/label/2012/021632s011lbl.pdf. Accessed 15 Jan 2017

  286. Lehrnbecher T, Groll AH (2010) Micafungin: a brief review of pharmacology, safety, and antifungal efficacy in pediatric patients. Pediatr Blood Cancer 55:229

    Article  PubMed  Google Scholar 

  287. Ryan DM, Lupinacci RJ, Kartsonis NA (2011) Efficacy and safety of caspofungin in obese patients. Med Mycol 49:748

    PubMed  Google Scholar 

  288. Krishnan BR, James KD, Polowy K et al (2017) CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J Antibiot (Tokyo) 70(2):130–135

    Article  CAS  Google Scholar 

  289. National Center for Biotechnology Information. PubChem Compound Database; CID: 3366. https://pubchem.ncbi.nlm.nih.gov/compound/flucytosine. Accessed 29 Jan 2017

  290. Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46:171–179

    Article  CAS  PubMed  Google Scholar 

  291. Onishi J, Meinz M, Thompson J et al (2000) Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Cutler RE, Blair AD, Kelly MR (1978) Flucytosine kinetics in subjects with normal and impaired renal function. Clin Pharmacol Ther 24:333–342

    Article  CAS  PubMed  Google Scholar 

  293. Wade DN, Sudlow G (1972) The kinetics of 5-fluorocytosine elimination in man. Aust NZ J Med 2:153–158

    Article  CAS  Google Scholar 

  294. Schönebeck J, Polak A, Fernex M, Scholer HJ (1973) Pharmacokinetic studies on the oral antimycotic agent 5-fluorocytosine in individuals with normal and impaired kidney function. Chemotherapy 18:321–336

    Article  PubMed  Google Scholar 

  295. Drouhet E, Babinet Chapusot JP, Kleinknecht D (1973) 5-fluorocytosine in the treatment of candidiasis with acute renal insufficiency. Biomedicine 19:408–414

    CAS  PubMed  Google Scholar 

  296. Peman J, Canton E, Espinel-Ingroff A (2009) Antifungal drug resistance mechanisms. Expert Rev Anti-Infect Ther 7:453–460

    Article  CAS  PubMed  Google Scholar 

  297. Espinel-Ingroff A (2008) Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev Iberoam Micol 25:101–106

    Article  PubMed  Google Scholar 

  298. Chapeland-Leclerc F, Bouchoux J, Goumar A, Chastin C, Villard J, Noel T (2005) Inactivation of the FCY2 gene encoding purine-cytosine permease promotes cross-resistance to flucytosine and fluconazole in Candida lusitaniae. Antimicrob Agents Chemother 49:3101–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Vandeputte P, Pineau L, Larcher G, Noel T, Brèthes D, Chabasse D, Bouchara JP (2011) Molecular mechanisms of resistance to 5-fluorocytosine in laboratory mutants of Candida glabrata. Mycopathologia 171:11–21

    Article  CAS  PubMed  Google Scholar 

  300. Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144

    Article  CAS  PubMed  Google Scholar 

  301. Costa C, Ponte A, Pais P et al (2015) New mechanisms of flucytosine resistance in C. glabrata unveiled by a chemogenomics analysis in S. cerevisiae. PLoS One 10:e0135110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Chowdhary A, Meis JF, Guarro J,et al, European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect 20(Suppl 3):47–75

    Google Scholar 

  303. Kauffman CA, Frame PT (1977) Bone marrow toxicity associated with 5-fluorocytosine therapy. Antimicrob Agents Chemother 11:244–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Wise GJ, Goldberg P, Kozinn PJ, Nawabi IU (1976) Agranulocytosis associated with flucytosine for urinary candidiasis. Urology 8:490–491

    Article  CAS  PubMed  Google Scholar 

  305. Stamm AM, Diasio RB, Dismukes WE et al (1987) Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med 83:236–242

    Article  CAS  PubMed  Google Scholar 

  306. Bennett JE, Dismukes WE, Duma RJ et al (1979) A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptococcal meningitis. N Engl J Med 301:26–131

    Article  Google Scholar 

  307. White CA, Traube J (1982) Ulcerating enteritis associated with flucytosine therapy. Gastroenterology 83:1127–1129

    CAS  PubMed  Google Scholar 

  308. Harder EJ, Hermans PE (1975) Treatment of fungal infections with flucytosine. Arch Intern Med 135:231–237

    Article  CAS  PubMed  Google Scholar 

  309. Vermes A, van der Sijs IH, Guchelaar HJ (2000) Flucytosine: correlation between toxicity and pharmacokinetic parameters. Chemotherapy 46:86–94

    Article  CAS  PubMed  Google Scholar 

  310. Vermes A, Mathot RAA, van der Sijs IH, Dankert J, Guchelaar HJ (2000) Population pharmacokinetics of flucytosine: comparison and validation of three models using STS, NPEM, and NONMEM. Ther Drug Monit 22:676–687

    Article  CAS  PubMed  Google Scholar 

  311. Fond B, Bentata-Pessayre M, Krivitzky A, Callard P, Dupont B, Delzant G (1983) Iatrogenic colitis during flucytosine treatment for neuromeningeal cryptococcosis. Sem Hop 59:1187

    CAS  PubMed  Google Scholar 

  312. Sohail MA, Ikram U (2014) Flucytosine-induced colitis. BMJ Case Rep. pii: bcr2013203381. doi:10.1136/bcr-2013-203381

  313. Cappell MS (2004) Colonic toxicity of administered drugs and chemicals. Am J Gastroenterol 99:1175–1190

    Article  CAS  PubMed  Google Scholar 

  314. Folk A, Cotoraci C, Balta C et al (2016) Evaluation of hepatotoxicity with treatment doses of flucytosine and amphotericin B for invasive fungal infections. Biomed Res Int 5398730

    Google Scholar 

  315. Holt RJ (1978) Clinical problems with 5-fluorocytosine. Mykosen 21:363–369

    Article  CAS  PubMed  Google Scholar 

  316. Richardson MD, Warnock DW (2003) Fungal infection: diagnosis and management, 3rd edn. Blackwell, Oxford, pp 66–69

    Book  Google Scholar 

  317. Kunka ME, Cady EA, Woo HC, Thompson Bastin ML (2015) Flucytosine pharmacokinetics in a critically ill patient receiving continuous renal replacement therapy. Case Rep Crit Care 2015:927496

    PubMed  PubMed Central  Google Scholar 

  318. Richardson MD, Jones BL (2003) Therapeutic guidelines in systemic fungal infection, 3rd edn. Current Medical Literature, London. Publication link: ca9d0625-7a45-49c0-a3e1-41c6fd17e3c3, pp 53–55

    Google Scholar 

  319. Kuang D, Ronco C (2007) Adjustment of antimicrobial regimen in critically ill patients undergoing continuous renal replacement therapy. In: J-L Vincent (ed) Yearbook of intensive care and emergency medicine, pp 592–606

    Google Scholar 

  320. Stafford CR, Fisher JF, Fadel HE, Espinel-Ingroff AV, Shadomy S, Hamby M (1983) Cryptococcal meningitis in pregnancy. Obstet Gynecol 62:35S–37S

    CAS  PubMed  Google Scholar 

  321. Njoku JC, Gumeel D, Hermsen ED (2010) Antifungal therapy in pregnancy and breastfeeding. Curr Fungal Infect Rep 4:62–69

    Article  Google Scholar 

  322. National Center for Biotechnology Information. PubChem Compound Database; CID: 1549008. https://pubchem.ncbi.nlm.nih.gov/compound/terbinafine. Accessed 29 Jan 2017

  323. Petranyi G, Ryder NS, Stütz A (1984) Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224:1239–1419

    Article  CAS  PubMed  Google Scholar 

  324. Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl 39):2–7

    Article  PubMed  Google Scholar 

  325. Hosseini-Yeganeh M, McLachlan AJ (2001) Tissue distribution of terbinafine in rats. J Pharm Sci 90:1817–1828

    Article  CAS  PubMed  Google Scholar 

  326. Hosseini-Yeganeh M, McLachlan AJ (2002) Physiologically based pharmacokinetic model for terbinafine in rats and humans. Antimicrob Agents Chemother 46:2219–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Leyden J (1998) Pharmacokinetics and pharmacology of terbinafine and itraconazole. J Am Acad Dermatol 38:S42–S47

    Article  CAS  PubMed  Google Scholar 

  328. Faergemann J, Zehender H, Jones T, Maibach HI (1990) Terbinafine levels in serum, stratum corneum, dermis epidermis (without stratum corneum), hair, sebum, and sweat. Acta Derm Venereol (Stockh) 71:322–326

    Google Scholar 

  329. Faergemann J, Zehender H, Denouël J, Millerioux L (1993) Levels of terbinafine in plasma, stratum corneum, dermis-epidermis (without stratum corneum), sebum, hair and nails during and after 250 mg terbinafine orally once per day for four weeks. Acta Derm Venereol 73:305–309

    CAS  PubMed  Google Scholar 

  330. Kovarik JM, Kirkesseli S, Humbert H et al (1992) Dose-proportional pharmacokinetics of terbinafine and its A-demethylated metabolite in healthy volunteers. Br J Dermatol 126(Suppl 39):8–13

    Article  PubMed  Google Scholar 

  331. De Doncker P (1997) Pharmacokinetics of oral antifungal agents. Dermatol Ther 3:46–57

    Google Scholar 

  332. Villars V, Jones TC (1990) Present status of the efficacy and tolerability of terbinafine (Lamisil) used systemically in the treatment of dermatomycoses of skin and nails. J Dermatol Treat 1(Suppl. 2):33–38

    Article  Google Scholar 

  333. Jensen JC (1990) Pharmacokinetics of Lamisil in humans. J Dermatol Treat 1(Suppl 2):15–18

    Article  Google Scholar 

  334. Zehender H, Cabiac MD, Denouei J et al (1994) Elimination kinetics of terbinafine from human plasma and tissues following multiple-dose administration, and comparison with 3 main metabolites. Drug Invest 8:203–210

    Article  CAS  Google Scholar 

  335. Debruyne D, Coquerel A (2001) Pharmacokinetics of antifungal agents in onychomycoses. Clin Pharmacokinet 40:441–472

    Article  CAS  PubMed  Google Scholar 

  336. Jensen JC (1989) Clinical pharmacokinetics of terbinafine (Lamisil). Clin Exp Dermatol 14:110–113

    Article  CAS  PubMed  Google Scholar 

  337. Meletiadis J, Chanock S, Walsh TJ (2006) Human pharmacogenomic variations and their implications for antifungal efficacy. Clin Microbiol Rev 19:763–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–396

    PubMed  Google Scholar 

  339. Vickers AE, Sinclair JR, Zollinger M et al (1999) Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos 27:1029–1038

    CAS  PubMed  Google Scholar 

  340. Nejjam F, Zagula M, Cabiac MD et al (1995) Pilot study of terbinafine in children suffering from tinea capitis: evaluation of efficacy, safety and pharmacokinetics. Br J Dermatol 132:98–105

    Article  CAS  PubMed  Google Scholar 

  341. Ghannoum MA, Wraith LA, Cai B, Nyirady J, Isham N (2008) Susceptibility of dermatophyte isolates obtained from a large worldwide terbinafine tinea capitis clinical trial. Br J Dermatol 159:711–713

    Article  CAS  PubMed  Google Scholar 

  342. Fernández-Torres B, Carrillo AJ, Martín E et al (2001) In vitro activities of 10 antifungal drugs against 508 dermatophyte strains. Antimicrob Agents Chemother 45:2524–2528

    Article  PubMed  PubMed Central  Google Scholar 

  343. Carrillo-Muñoz AJ, Giusiano G, Cárdenes D, Fernández-Molina JM, Eraso E, Quindós G, Guardia C, del Valle O, Tur-Tur C, Guarro J (2008) Terbinafine susceptibility patterns for onychomycosis-causative dermatophytes and Scopulariopsis brevicaulis. Int J Antimicrob Agents 31:540–543

    Article  PubMed  CAS  Google Scholar 

  344. Borba-Santos LP, Rodrigues AM, Gagini TB et al (2015) Susceptibility of Sporothrix brasiliensis isolates to amphotericin B, azoles, and terbinafine. Med Mycol 53:178–188

    Article  CAS  PubMed  Google Scholar 

  345. Ottonelli Stopiglia CD, Magagnin CM, Castrillón MR et al (2014) Antifungal susceptibilities and identification of species of the Sporothrix schenckii complex isolated in Brazil. Med Mycol 52:56–64

    CAS  PubMed  Google Scholar 

  346. Daboit TC, Massotti Magagnin C, Heidrich D et al (2014) In vitro susceptibility of chromoblastomycosis agents to five antifungal drugs and to the combination of terbinafine and amphotericin B. Mycoses 57:116–120

    Article  CAS  PubMed  Google Scholar 

  347. van Belkum A, Fahal AH, van de Sande WW (2011) In vitro susceptibility of Madurella mycetomatis to posaconazole and terbinafine. Antimicrob Agents Chemother 55:1771–1773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  348. Ameen M, Lear JT, Madan V, Mohd Mustapa MF, Richardson M (2014) British Association of Dermatologists’ guidelines for the management of onychomycosis 2014. Br J Dermatol 171:937–958

    Article  CAS  PubMed  Google Scholar 

  349. de Sá DC, Lamas AP, Tosti A (2014) Oral therapy for onychomycosis: an evidence-based review. Am J Clin Dermatol 15:17–36

    PubMed  Google Scholar 

  350. Gupta AK, Daigle D, Foley KA (2015) Network meta-analysis of onychomycosis treatments. Skin Appendage Disord 1:74–81

    Article  PubMed  PubMed Central  Google Scholar 

  351. Gupta AK, Gregurek-Novak T (2001) Efficacy of itraconazole, terbinafine, fluconazole, griseofulvin and ketoconazole in the treatment of Scopulariopsis brevicaulis causing onychomycosis of the toes. Dermatology 202:235–238

    Article  CAS  PubMed  Google Scholar 

  352. Onsberg P (1980) Scopulariopsis brevicaulis in nails. Dermatologica 161:259–264

    Article  CAS  PubMed  Google Scholar 

  353. Chen X, Jiang X, Yang M et al (2016) Systemic antifungal therapy for tinea capitis in children. Cochrane Database Syst Rev 5:CD004685

    Google Scholar 

  354. Gupta AK, Drummond-Main C (2013) Meta-analysis of randomized, controlled trials comparing particular doses of griseofulvin and terbinafine for the treatment of tinea capitis. Pediatr Dermatol 30:1–6

    Article  PubMed  Google Scholar 

  355. Howden BP, Slavin MA, Schwarer AP, Mijch AM (2003) Successful control of disseminated Scedosporium prolificans infection with a combination of voriconazole and terbinafine. Eur J Clin Microbiol Infect Dis 22:111–113

    CAS  PubMed  Google Scholar 

  356. Bhat SV, Paterson DL, Rinaldi MG, Veldkamp PJ (2007) Scedosporium prolificans brain abscess in a patient with chronic granulomatous disease: successful combination therapy with voriconazole and terbinafine. Scand J Infect Dis 39:87–90

    Article  PubMed  Google Scholar 

  357. Gosbell IB, Toumasatos V, Yong J, Kuo RS, Ellis DH, Perrie RC (2003) Cure of orthopaedic infection with Scedosporium prolificans, using voriconazole plus terbinafine, without the need for radical surgery. Mycoses 46:233–236

    Article  CAS  PubMed  Google Scholar 

  358. Li JY, Yong TY, Grove DI, Coates PT (2008) Successful control of Scedosporium prolificans septic arthritis and probable osteomyelitis without radical surgery in a long-term renal transplant recipient. Transpl Infect Dis 10:63–65

    Article  CAS  PubMed  Google Scholar 

  359. Tortorano AM, Richardson M, Roilides E, et al, European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (2014) European ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect 20(Suppl 3):27–46

    Google Scholar 

  360. N’diaye B, Dieng MT, Perez A, Stockmeyer M, Bakshi R (2006) Clinical efficacy and safety of oral terbinafine in fungal mycetoma. Int J Dermatol 45:154–157

    Article  PubMed  Google Scholar 

  361. Rothe A, Seibold M, Hoppe T et al (2004) Combination therapy of disseminated Fusarium oxysporum infection with terbinafine and amphotericin B. Ann Hematol 83:394–397

    Article  CAS  PubMed  Google Scholar 

  362. Neuburger S, Massenkeil G, Seibold M et al (2008) Successful salvage treatment of disseminated cutaneous fusariosis with liposomal amphotericin B and terbinafine after allogeneic stem cell transplantation. Transpl Infect Dis 10:290–293

    Article  CAS  PubMed  Google Scholar 

  363. Tavakkol A, Fellman S, Kianifard F (2006) Safety and efficacy of oral terbinafine in the treatment of onychomycosis: analysis of the elderly subgroup in Improving Results in Onychomycosis-Concomitant Lamisil and Debridement (IRON-CLAD), an open-label, randomized trial. Am J Geriatr Pharmacother 4:1–13

    Article  CAS  PubMed  Google Scholar 

  364. Villars VV, Jones TC (1983) Special features of the clinical use of oral terbinafine in the treatment of fungal diseases. Br J Med 308:1275–1279

    Google Scholar 

  365. O’Sullivan DP, Needham CA, Bangs A, Atkin K, Kendall FD (1996) Postmarketing surveillance of oral terbinafine in the UK: report of a large cohort study. Br J Clin Pharmacol 42:559–565

    Article  PubMed  Google Scholar 

  366. Van’t Wout JW, Herrmann WA, De Vries RA, Stricker BHC (1994) Terbinafine-associated hepatic injury. J Hepatol 21:115–117

    Article  Google Scholar 

  367. Juhlin L (1992) Loss of taste and terbinafine. Lancet 339:1483

    Article  CAS  PubMed  Google Scholar 

  368. Doty RL, Haxel BR (2005) Objective assessment of terbinafine-induced taste loss. Laryngoscope 115:2035–2037

    Article  CAS  PubMed  Google Scholar 

  369. Beutler M, Hartmann K, Kuhn M, Gartmann J (1993) Taste disorders and terbinafine. Br Med J 307:26

    Article  CAS  Google Scholar 

  370. Stricker BH, Van Riemsdijk MM, Sturkenboom MC, Ottervanger JP (1996) Taste loss to terbinafine: a case-control study of potential risk factors. Br J Clin Pharmacol 42:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Zheng Y, Zhang J, Chen H, Lai W, Maibach HI (2016) Terbinafine-induced lichenoid drug eruption. Cutan Ocul Toxicol 30:1–3

    Google Scholar 

  372. George A, Bhatia A, Kanish B, Williams A (2015) Terbinafine induced pityriasis rosea-like eruption. Indian J Pharmacol 47:680–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Bonsmann G, Schiller M, Luger TA, Ständer S (2001) Terbinafine-induced subacute cutaneous lupus erythematosus. J Am Acad Dermatol 44:925–931

    Article  CAS  PubMed  Google Scholar 

  374. Lorentz K, Booken N, Goerdt S, Goebeler M (2008) Subacute cutaneous lupus erythematosus induced by terbinafine: case report and review of literature. J Dtsch Dermatol Ges 6:823–827

    Article  PubMed  Google Scholar 

  375. Pillans PI, Boyd IW (2007) Toenails and agranulocytosis. Intern Med J 37:572–575

    Article  CAS  PubMed  Google Scholar 

  376. Gupta AK, Soori GS, Del Rosso JQ, Bartos PB, Shear NH (1998) Severe neutropenia associated with oral terbinafine therapy. J Am Acad Dermatol 38:765–767

    Article  CAS  PubMed  Google Scholar 

  377. Ornstein DL, Ely P (1998) Reversible agranulocytosis associated with oral terbinafine for onychomycosis. J Am Acad Dermatol 39:1023–1024

    Article  CAS  PubMed  Google Scholar 

  378. Shapiro M, Li LJ, Miller J (1999) Terbinafine-induced neutropenia. Br J Dermatol 140:1196–1197

    CAS  PubMed  Google Scholar 

  379. Conjeevaram G, Vongthavaravat V, Sumner R, Koff RS (2001) Terbinafine-induced hepatitis and pancytopenia. Dig Dis Sci 46:1714–1716

    Article  CAS  PubMed  Google Scholar 

  380. Aguilar C, Mueller KK (2001) Reversible agranulocytosis associated with oral terbinafine in a pediatric patient. J Am Acad Dermatol 45:632–634

    Article  CAS  PubMed  Google Scholar 

  381. Kovacs MJ, Alshammari S, Guenther L, Bourcier M (1994) Neutropenia and pancytopenia associated with oral terbinafine. J Am Acad Dermatol 31:806

    Article  CAS  PubMed  Google Scholar 

  382. Tsai HH, Lee WR, Hu CH (2002) Isolated thrombocytopenia associated with oral terbinafine. Br J Dermatol 147:627–628

    Article  PubMed  Google Scholar 

  383. Grunwald MH (1998) Thrombocytopenia associated with oral terbinafine. Int J Dermatol 37:634

    CAS  PubMed  Google Scholar 

  384. Kantarcıoğlu B, Türköz HK, Yılmaz G et al (2014) Aplastic anemia associated with oral terbinafine: a case report and review of the literature. Turk J Haematol 31:411–416

    Article  PubMed  PubMed Central  Google Scholar 

  385. Chitturi S, Farrell GC (2007) Drug-induced liver disease. In: Schiff ER, Sorrell MF, Maddrey WC (eds) Schiff’s diseases of the liver, 10th edn. Lippincott Williams and Wilkins, Philadelphia, pp 924–1005

    Google Scholar 

  386. Gupta AK, del Rosso JQ, Lynde CW, Brown GH, Shear NH (1998) Hepatitis associated with terbinafine therapy: three case reports and a review of the literature. Clin Exp Dermatol 23:64–67

    Article  CAS  PubMed  Google Scholar 

  387. Anania FA, Rabin L (2002) Terbinafine hepatotoxicity resulting in chronic biliary ductopenia and portalfibrosis. Am J Med 112:741–742

    Article  PubMed  Google Scholar 

  388. Choudhary NS, Kotecha H, Saraf N, Gautam D, Saigal S (2014) Terbinafine induced liver injury: a case report. J Clin Exp Hepatol 4:264–265

    Article  PubMed  PubMed Central  Google Scholar 

  389. Dürrbeck A, Nenoff P (2016) Terbinafine: relevant drug interactions and their management. Hautarzt 67:718–723

    Article  PubMed  Google Scholar 

  390. Jensen P, Lehne G, Fauchald P, Simonsen S (1996) Effect of oral terbinafine treatment on cyclosporin pharmacokinetics in organ transplant recipients with dermatophyte nail infection. Acta Derm Venereol 76:280–281

    CAS  PubMed  Google Scholar 

  391. WHO Pharmaceuticals. Newsletter 2001, No. 02&03, p 6

    Google Scholar 

  392. (2007) Terbinafine hydrochloride [package insert]. Novartis Pharmaceuticals, East Hanover, NJ

    Google Scholar 

  393. Wagner C, Graninger W, Presterl E, Joukhadar C (2006) The echinocandins: comparison of their pharmacokinetics, pharmacodynamics and clinical applications. Pharmacology 78(4):161–177

    Article  CAS  PubMed  Google Scholar 

  394. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect 20(Suppl 3):76–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Bustamante M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bustamante, B., Hidalgo, J.A., Campos, P.E. (2017). Antifungal Drugs. In: Mora-Montes, H., Lopes-Bezerra, L. (eds) Current Progress in Medical Mycology. Springer, Cham. https://doi.org/10.1007/978-3-319-64113-3_2

Download citation

Publish with us

Policies and ethics