Skip to main content
Log in

An efficient and unified method for band structure calculations of 2D anisotropic photonic-crystal fibers

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this article, band structure calculations of two dimensional (2D) anisotropic photonic-crystal fibers (PhCFs) are considered. In 2D PhCFs, Maxwell’s equations for the transversal electric and magnetic mode become decoupled, but the difficulty, arising from the anisotropic permittivity \({{\varvec{\varepsilon }}}\) and/or permeability \({{\varvec{\mu }}},\) plaguing the frequency-domain finite difference method, especially the original Yee’s scheme, is our top concern. To resolve this difficulty, we re-establish the connection between the lowest order finite element method with the quasi-periodic condition and Yee’s scheme using 2D non-orthogonal mesh, whereby the decoupled Maxwell’s equations in 2D anisotropic PhCFs are readily discretized into a generalized eigenvalue problem (GEP). Moreover, we spell out the nullspace of the resulting GEP, if it exists, and explicitly construct the Moore–Penrose pseudoinverse of the singular coefficient matrix, whose smallest positive eigenvalues can be solved by the inverse Lanczos method. Extensive band structures of 2D PhCFs are calculated and benchmarked against reliable results to demonstrate the accuracy and efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We note that, in [2], the HPD \({{\varvec{\varepsilon }}}({{\textbf {r}}})\) may be discretized into a Hermitian positive semi-definite matrix as a result of (55a) there, which leads to severe difficulties in subsequent computations. In contrast, the HPD \({{\varvec{\varepsilon }}}({{\textbf {r}}})\) is guaranteed to be discretized into a HPD matrix if our (32d) is used instead.

  2. Our MATLAB code for all examples in this section is available at https://github.com/FAME-GPU/2DPhC.

References

  1. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008). https://doi.org/10.2307/j.ctvcm4gz9

    Book  Google Scholar 

  2. Chou, S.-H., Huang, T.-M., Li, T., Lin, J.-W., Lin, W.-W.: A finite element based fast eigensolver for three dimensional anisotropic photonic crystals. J. Comput. Phys. 386, 611–631 (2019). https://doi.org/10.1016/j.jcp.2019.02.029

    Article  MathSciNet  Google Scholar 

  3. Nédélec, J.-C.: Mixed finite elements in \({\mathbb{R} }^3\). Numer. Math. 35, 315–341 (1980). https://doi.org/10.1007/BF01396415

    Article  MathSciNet  Google Scholar 

  4. Nédélec, J.-C.: A new class of mixed finite elements in \({\mathbb{R} }^3\). Numer. Math. 50, 57–81 (1986). https://doi.org/10.1007/BF01389668

    Article  MathSciNet  Google Scholar 

  5. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston (2005). https://doi.org/10.1016/B978-012170960-0/50046-3

    Book  Google Scholar 

  6. Chern, R.-L., Hsieh, H.-E., Huang, T.-M., Lin, W.-W., Wang, W.: Singular value decompositions for single-curl operators in three-dimensional Maxwell’s equations for complex media. SIAM J. Matrix Anal. Appl. 36, 203–224 (2015). https://doi.org/10.1137/140958748

    Article  MathSciNet  Google Scholar 

  7. Huang, T.-M., Hsieh, H.-E., Lin, W.-W., Wang, W.: Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three dimensional photonic crystals. SIAM J. Matrix Anal. Appl. 34, 369–391 (2013). https://doi.org/10.1137/120872486

    Article  MathSciNet  Google Scholar 

  8. Huang, T.-M., Hsieh, H.-E., Lin, W.-W., Wang, W.: Matrix representation of the double-curl operator for simulating three dimensional photonic crystals. Math. Comput. Model. 58, 379–392 (2013). https://doi.org/10.1016/j.mcm.2012.11.008

    Article  MathSciNet  Google Scholar 

  9. Lyu, X.-L., Li, T., Lin, J.-W., Huang, T.-M., Lin, W.-W., Tian, H.: Solving Maxwell eigenvalue problems for three dimensional isotropic photonic crystals with fourteen Bravais lattices. J. Comput. Appl. Math. 410, 114220 (2022). https://doi.org/10.1016/j.cam.2022.114220

    Article  MathSciNet  Google Scholar 

  10. Ho, K.M., Chan, C.-T., Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65(25), 3152 (1990). https://doi.org/10.1103/PhysRevLett.65.3152

    Article  Google Scholar 

  11. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001). https://doi.org/10.1364/OE.8.000173

    Article  Google Scholar 

  12. Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Heidelberg (2004). https://doi.org/10.1007/b138376

    Book  Google Scholar 

  13. Gupta, B.C., Kuo, C.-H., Ye, Z.: Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems. Phys. Rev. E 69(6), 066615 (2004). https://doi.org/10.1103/PhysRevE.69.066615

    Article  Google Scholar 

  14. Twersky, V.: Multiple scattering of radiation by an arbitrary configuration of parallel cylinders. J. Acoust. Soc. Am. 24(1), 42–46 (1952). https://doi.org/10.1063/1.1702220

    Article  MathSciNet  Google Scholar 

  15. Guo, S., Wu, F., Albin, S., Rogowski, R.S.: Photonic band gap analysis using finite-difference frequency-domain method. Opt. Express 12, 1741–1746 (2004). https://doi.org/10.1364/OPEX.12.001741

    Article  Google Scholar 

  16. Rumpf, R.C., Garcia, C.R., Berry, E.A., Barton, J.H.: Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects. Prog. Electromagn. Res. B 61, 55–67 (2014). https://doi.org/10.2528/PIERB14071606

    Article  Google Scholar 

  17. Shen, L., He, S., Xiao, S.: A finite-difference eigenvalue algorithm for calculating the band structure of a photonic crystal. Comput. Phys. Commun. 143(3), 213–221 (2002). https://doi.org/10.1016/s0010-4655(01)00456-8

    Article  Google Scholar 

  18. Dobson, D.C., Gopalakrishnan, J., Pasciak, J.E.: An efficient method for band structure calculations in 3D photonic crystals. J. Comput. Phys. 161, 668–679 (2000). https://doi.org/10.1006/jcph.2000.6521

    Article  MathSciNet  Google Scholar 

  19. Dobson, D.C., Pasciak, J.: Analysis for an algorithm for computing electromagnetic Bloch modes using Nédélec spaces. Comput. Methods Appl. Math. 1, 138–153 (2001). https://doi.org/10.2478/cmam-2001-0010

    Article  MathSciNet  Google Scholar 

  20. Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)

    Google Scholar 

  21. Lu, Z., Cesmelioglu, A., Van der Vegt, J.J.W., Xu, Y.: Discontinuous Galerkin approximations for computing electromagnetic Bloch modes in photonic crystals. J. Sci. Comput. 70(2), 922–964 (2016). https://doi.org/10.1007/s10915-016-0270-1

    Article  MathSciNet  Google Scholar 

  22. Liu, N., Tobón, L.E., Zhao, Y., Tang, Y., Liu, Q.H.: Mixed spectral-element method for 3-D Maxwell’s eigenvalue problem. IEEE Trans. Microw Theory Tech. 63, 317–325 (2015). https://doi.org/10.1109/TMTT.2014.2387839

    Article  Google Scholar 

  23. Luo, M., Liu, Q.H.: Spectral element method for band structures of three-dimensional anisotropic photonic crystals. Phys. Rev. E 80, 056702 (2009). https://doi.org/10.1103/PhysRevE.80.056702

    Article  Google Scholar 

  24. Li, F.-L., Wang, Y.-S., Zhang, C.: Boundary element method for bandgap computation of photonic crystals. Opt. Commun. 285(5), 527–532 (2012). https://doi.org/10.1016/j.optcom.2011.11.029

    Article  Google Scholar 

  25. MATLAB: Version 9.8.0 (R2020a). The MathWorks Inc., Natick, Massachusetts (2020). http://www.mathworks.com

  26. Huang, W.-Q., Lin, W.-W., Lu, H.H.-S., Yau, S.-T.: iSIRA: Integrated shift-invert residual Arnoldi method for graph Laplacian matrices from big data. J. Comput. Appl. Math. 346, 518–531 (2019). https://doi.org/10.1016/j.cam.2018.07.031

    Article  MathSciNet  Google Scholar 

  27. COMSOL Multiphysics® v 5.5.0. COMSOL Inc., Stockholm, Sweden (2020). http://www.comsol.com

  28. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2004)

    Google Scholar 

  29. D’haeseleer, W.D., Hitchon, W.N.G., Callen, J.D., Shohet, J.L.: Flux Coordinates and Magnetic Field Structure. Springer, Berlin (1991). https://doi.org/10.1007/978-3-642-75595-8

    Book  Google Scholar 

Download references

Acknowledgements

T. Li was partially supported by the National Natural Science Foundation of China (NSFC) no. 12371377 and the Big Data Computing Center in Southeast University. H. Tian sincerely thanks the hospitality of Nanjing Center for Applied Mathematics (NCAM) during the initialization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiexiang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of (7)

Using vector calculus identities, we have

$$\begin{aligned} \nabla \times {\varvec{\mu }}^{-1}\cdot \nabla \times (E_z\vec {{\textbf {e}}}_z)= \nabla \times {\varvec{\mu }}^{-1}\cdot (-\vec {{\textbf {e}}}_z\times \nabla E_z). \end{aligned}$$

For convenience, denote \(\vec {{{\textbf {v}}}}:={\varvec{\mu }}^{-1}\cdot (\vec {{\textbf {e}}}_z\times \nabla E_z).\) After projecting both sides of (3a) onto \(\vec {{\textbf {e}}}_z,\) we obtain

$$\begin{aligned}&\omega ^2\varepsilon _{z} E_{z}\vec {{\textbf {e}}}_{z}\cdot \vec {{\textbf {e}}}_{z} = \omega ^2\varepsilon _{z} E_{z}, \nonumber \\&\vec {{\textbf {e}}}_{z} \cdot \nabla \times (-\vec {{{{\textbf {v}}}}}) = -\nabla \cdot ({\vec {{{\textbf {v}}}}}\times \vec {{\textbf {e}}}_{z})= \nabla \cdot (\vec {{\textbf {e}}}_{z}\times \vec {{{\textbf {v}}}}), \end{aligned}$$

for the RHS and LHS of (3a), respectively.

Remember that \(E_z\) is a function of \({{\textbf {r}}}_{\perp },\) hence \(\nabla E_z\) should be understood as \([\nabla _{\perp } E_z, 0],\) then \(\vec {{\textbf {e}}}_z\times \nabla E_z\) is just \(\nabla _{\perp } E_z\) rotated counterclockwise by \(\pi /2\) within the plane perpendicular to \(\vec {{\textbf {e}}}_z\) and represented by \([\vec {{\textbf {e}}}_z\times \nabla _{\perp } E_z,0].\) Furthermore, by (4), \(\vec {{{\textbf {v}}}}\) should be understood as \([{\varvec{\mu }}_{\perp }^{-1}\cdot (\vec {{\textbf {e}}}_z\times \nabla _{\perp } E_z),0]\) with \(\vec {{\textbf {e}}}_z\times \vec {{{\textbf {v}}}}\) being understood similarly to \(\vec {{\textbf {e}}}_z\times \nabla E_z,\) therefore \(\nabla \cdot (\vec {{\textbf {e}}}_z\times \vec {{{\textbf {v}}}})\) should be seen as \(\nabla _{\perp }\cdot (\vec {{\textbf {e}}}_z\times \vec {{{\textbf {v}}}})+0.\) Thus, after using the definition of \(\vec {{{\textbf {v}}}}\) above, we obtain exactly the LHS of (7a).

Appendix B: Derivation of (28c)

With \(\varvec{a}_1\) and \(\varvec{a}_2\) as basis vectors of \({\varvec{\Omega }}\) shown in (15a), we can define the reciprocal vectors \(\varvec{a}^1\) and \(\varvec{a}^2\) such that \(\varvec{a}^\ell \cdot \varvec{a}_{\ell '} = \delta _{\ell ',\ell }, \ell ',\ell =1,2,\) or \([\varvec{a}^1,\varvec{a}^2][\varvec{a}_1, \varvec{a}_2]^{\top } = I_2\) in terms of matrix language. Then, given the basis function \(\phi _{ij}, i\in {\mathbb {N}}_1,j\in {\mathbb {N}}_2,\) it follows from [29] that

$$\begin{aligned} \nabla _{\perp }\phi _{ij} = \varvec{a}^1\partial _\xi \phi _{ij} + \varvec{a}^2\partial _\eta \phi _{ij}. \end{aligned}$$
(B1)

Furthermore, it follows from (15b) and [29] that

$$\begin{aligned} \varvec{a}_1 = (\varvec{a}^2\times \vec {{\textbf {e}}}_z)\Vert \varvec{a}_1\times \varvec{a}_2\Vert _2,\quad \varvec{a}_2 =(\vec {{\textbf {e}}}_z \times \varvec{a}^1)\Vert \varvec{a}_1\times \varvec{a}_2\Vert _2. \end{aligned}$$
(B2)

Immediately, we see that (B1) and (B2) lead to (28c).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yang, HN., Li, T. et al. An efficient and unified method for band structure calculations of 2D anisotropic photonic-crystal fibers. Calcolo 61, 20 (2024). https://doi.org/10.1007/s10092-024-00572-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-024-00572-6

Keywords

Mathematics Subject Classification

Navigation