Skip to main content
Log in

Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We analyze discontinuous Galerkin finite element discretizations of the Maxwell equations with periodic coefficients. These equations are used to model the behavior of light in photonic crystals, which are materials containing a spatially periodic variation of the refractive index commensurate with the wavelength of light. Depending on the geometry, material properties and lattice structure these materials exhibit a photonic band gap in which light of certain frequencies is completely prohibited inside the photonic crystal. By Bloch/Floquet theory, this problem is equivalent to a modified Maxwell eigenvalue problem with periodic boundary conditions, which is discretized with a mixed discontinuous Galerkin (DG) formulation using modified Nédélec basis functions. We also investigate an alternative primal DG interior penalty formulation and compare this method with the mixed DG formulation. To guarantee the non-pollution of the numerical spectrum, we prove a discrete compactness property for the corresponding DG space. The convergence rate of the numerical eigenvalues is twice the minimum of the order of the polynomial basis functions and the regularity of the solution of the Maxwell equations. We present both 2D and 3D numerical examples to verify the convergence rate of the mixed DG method and demonstrate its application to computing the band structure of photonic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. Math. 87(2), 229–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, New York (2013)

    Book  MATH  Google Scholar 

  3. Boffi, D., Conforti, M., Gastaldi, L.: Modified edge finite elements for photonic crystals. Numer. Math. 105(2), 249–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36(4), 1264–1290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bossavit, A.: A rationale for edge-elements in 3-D fields computations. Magn. IEEE Trans. 24, 74–79 (1988)

    Article  Google Scholar 

  6. Bossavit, A.: Solving Maxwell equations in a closed cavity, and the question of ‘spurious modes’. Magn. IEEE Trans. 26(2), 702–705 (1990)

    Article  Google Scholar 

  7. Brenner, S.C., Li, F., Sung, L.Y.: A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal. 46(3), 1190–1211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204(2), 317–333 (2007). Special Issue: The Seventh International Conference on Mathematical and Numerical Aspects of Waves (WAVES05)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Busch, K., Knig, M., Niegemann, J.: Discontinuous Galerkin methods in nanophotonics. Laser Photon. Rev. 5(6), 773–809 (2011)

    Article  Google Scholar 

  11. Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38(2), 580–607 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Li, F., Shu, C.W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194(2), 588–610 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 1. The problem of convergence. RAIRO Anal. Numer. 12(2), 97–112 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Dobson, D.C.: An efficient method for band structure calculations in 2D photonic crystals. J. Comput. Phys. 149(2), 363–376 (1999)

    Article  MATH  Google Scholar 

  15. Dobson, D.C., Gopalakrishnan, J., Pasciak, J.E.: An efficient method for band structure calculations in 3D photonic crystals. J. Comput. Phys. 161(2), 668–679 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dobson, D.C., Pasciak, J.E.: Analysis of an algorithm for computing electromagnetic Bloch modes using Nédélec spaces. Comput. Methods Appl. Math. 1(2), 138–153 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Dörfler, W., Lechleiter, A., Plum, M., Schneider, G., Wieners, C.: Photonic Crystals: Mathematical Analysis and Numerical Approximation. Springer, NewYork (2011)

    Book  MATH  Google Scholar 

  18. Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7(07), 957–991 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grote, M.J., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: energy norm error estimates. J. Comput. Appl. Math. 204(2), 375–386 (2007). Special Issue: The Seventh International Conference on Mathematical and Numerical Aspects of Waves (WAVES05)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grote, M.J., Schneebeli, A., Schötzau, D.: Interior penalty discontinuous Galerkin method for Maxwell’s equations: optimal \(L^2\)-norm error estimates. IMA J. Numer. Anal. 28(3), 440–468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hesthaven, J.S., Warburton, T.: High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1816), 493–524 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100(3), 485–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case. ESAIM Math. Model. Numer. Anal. 39(4), 727–753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Houston, P., Perugia, I., Schötzau, D.: hp-DGFEM for Maxwell’s equations. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, Aeditors (eds.) Numerical Mathematics and Advanced Applications, pp. 785–794. Springer, Milan (2003)

    Chapter  Google Scholar 

  26. Houston, P., Perugia, I., Schotzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42(1), 434–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Houston, P., Perugia, I., Schötzau, D.: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput. Methods Appl. Mech. Eng. 194(25), 499–510 (2005). Selected papers from the 11th Conference on The Mathematics of Finite Elements and Applications

    Article  MathSciNet  MATH  Google Scholar 

  28. Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: non-stabilized formulation. J. Sc. Comput. 22–23(1–3), 315–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  30. Kantorovich, L.: Quantum Theory of the Solid State: An Introduction, vol. 136. Springer, NewYork (2004)

    Book  MATH  Google Scholar 

  31. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kikuchi, F.: Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Eng. 64(1), 509–521 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Kikuchi, F.: On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(3), 479–490 (1989)

    MATH  Google Scholar 

  34. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  35. Monk, P., Demkowicz, L.: Discrete compactness and the approximation of Maxwell’s equations in \(\mathbb{R}^3\). Math. Comput. 70(234), 507–523 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nelson, D., Jacob, T.S.: Linear Operators. Part 1 General Theory. Interscience publishers, NewYork (1958)

    MATH  Google Scholar 

  38. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Osborn, J.E.: Spectral approximation for compact operators. Math. Comput. 29(131), 712–725 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Perugia, I., Schötzau, D.: The \(hp\)-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72(243), 1179–1214 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191(41), 4675–4697 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sármány, D., Izsák, F., van der Vegt, J.J.W.: Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-harmonic Maxwell equations. J. Sci. Comput. 44(3), 219–254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Soukoulis, C.M.: Photonic Band Gap Materials. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  44. Sözüer, H.S., Haus, J.W.: Photonic bands: simple-cubic lattice. JOSA B 10(2), 296–302 (1993)

    Article  Google Scholar 

  45. Sun, D., Manges, J., Yuan, X., Cendes, Z.: Spurious modes in finite-element methods. Antennas Propag. Mag. IEEE 37(5), 12–24 (1995)

    Article  Google Scholar 

  46. Taflove, A., Hagness S.C.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Inc., Boston, MA, second edition, 2000. With 1 CD-ROM (Windows)

  47. Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Eng. 195(2528), 3205–3223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Additional information

Research of A. Cesmelioglu was supported by the Oakland University URC Faculty Research Fellowship Award. Research of J.J.W. Van der Vegt was supported by the High-end Foreign Experts Recruitment Program (GDW20157100301), while the author was in residence at the University of Science and Technology of China in Hefei, Anhui, China. Research of Yan Xu was supported by NSFC Grant Nos. 11371342 and 11526212.

Appendices

Appendix

Appendix A: Continuity and Semi-Ellipticity

Lemma 10.1

For all \(\varvec{v}\in {\varvec{V}}(h)\) and \(q \in Q(h)\),

$$\begin{aligned} \begin{aligned} \Vert \epsilon ^{-\frac{1}{2}} \mathcal {L}({\varvec{v}}) \Vert _{0 ,\varOmega }&\le C \Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{v} ]] _T \Vert _{0 ,{\mathcal {F}_h }},\\ \Vert \mathcal {M}({q}) \Vert _{0 ,\varOmega }&\le C \Vert {{h}}^{-\frac{1}{2}}{[[ q ]] _N} \Vert _{0 ,{\mathcal {F}_h }}. \end{aligned} \end{aligned}$$

with a constant \(C>0\) that is independent of the mesh size and the coefficient \(\epsilon \).

Proof

$$\begin{aligned} \begin{aligned} \Vert \epsilon ^{-\frac{1}{2}} \mathcal {L}({\varvec{v}}) \Vert _{0 ,\varOmega }&=\sup _{\varvec{w}\in {\varvec{V}}^{\varvec{\alpha }}_h}\frac{\int _ {\varOmega }\epsilon ^{-\frac{1}{2}} \mathcal {L}({\varvec{v}}) \cdot \overline{ \varvec{w}}d\varvec{x}}{\Vert \varvec{w} \Vert _{0 ,\varOmega }}\\&=\sup _{\varvec{w}\in {\varvec{V}}^{\varvec{\alpha }}_h}\frac{\int _ {{\mathcal {F}_h }}\epsilon ^{-\frac{1}{2}}[[ \varvec{v} ]] _T\cdot \overline{ \{\{ \varvec{w} \}\}}ds}{\Vert \varvec{w} \Vert _{0 ,\varOmega }}\\&\le \sup _{\varvec{w}\in {\varvec{V}}^{\varvec{\alpha }}_h}\frac{\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{v} ]] _T \Vert _{0 ,{\mathcal {F}_h }} \Vert {{h}}^\frac{1}{2}\{\{ \varvec{w} \}\} \Vert _{0 ,{\mathcal {F}_h }}}{\Vert \varvec{w} \Vert _{0 ,\varOmega }}\\&\le C \Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{v} ]] _T \Vert _{0 ,{\mathcal {F}_h }}. \end{aligned} \end{aligned}$$

Here we use the inverse inequality Lemma 11 in [41]:

$$\begin{aligned} \begin{aligned} \Vert {{h}}^\frac{1}{2}\{\{ \varvec{w} \}\} \Vert _{0 ,{\mathcal {F}_h }}^2 \le C \sum _{K\in {\mathcal {T}_h }} h_K \Vert \varvec{w} \Vert _{0,\partial K} ^2 \le C \sum _{K\in {\mathcal {T}_h }} \Vert \varvec{w} \Vert _{0,K}^2= C \Vert \varvec{w} \Vert _{0 ,\varOmega } ^2. \end{aligned} \end{aligned}$$

The proof of the other estimate is similar. \(\square \)

Theorem 10.1

There exist constants \(a_1>0\) and \(a_2>0\), independent of the mesh size and the coefficient \(\epsilon \), such that

$$\begin{aligned} \begin{aligned} \left| A_h(\varvec{u},{\varvec{\lambda }};\varvec{v},{\varvec{\eta }}) \right|&\le a_1 \Vert ( \varvec{u},{\varvec{\lambda }}) \Vert _{{\varvec{U}}(h)}\Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}\quad \;\;\; \forall \; (\varvec{u},{\varvec{\lambda }}), (\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}(h),\\ \left| B_h(\varvec{v},{\varvec{\eta }};q) \right|&\le a_2 \Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}\Vert q \Vert _{Q(h)} \quad \quad \quad \;\,\, \forall \; (\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}(h), \; \forall \; q \in Q(h). \end{aligned} \end{aligned}$$

Proof

$$\begin{aligned} \begin{aligned} \left| A_h(\varvec{u},{\varvec{\lambda }};\varvec{v},{\varvec{\eta }}) \right| \le&\, \Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}\times \varvec{u} \Vert _{0 ,\varOmega }\Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}\times \varvec{v} \Vert _{0 ,\varOmega }\\&+C(\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]] _T \Vert _{0 ,{\mathcal {F}_h }} \Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}\times \varvec{v} \Vert _{0 ,\varOmega }\\&+\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{v} ]] _T \Vert _{0 ,\varOmega } \Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}\times \varvec{u} \Vert _{0 ,\varOmega } )\\&+ {\mathfrak {a}}\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]] _T \Vert _{0 ,{\mathcal {F}_h }} \Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{v} ]] _T \Vert _{0 ,{\mathcal {F}_h }}\\&+ {\mathfrak {b}}\Vert {{h}}^\frac{1}{2}{[[ \varvec{u} ]] _N} \Vert _{0 ,{\mathcal {F}_h }} \Vert {{h}}^\frac{1}{2}{[[ \varvec{v} ]] _N} \Vert _{0 ,{\mathcal {F}_h }}\\&+{\mathfrak {c}}\Vert {{h}}^{-\frac{1}{2}}{\varvec{\lambda }} \Vert _{0 ,{\mathcal {F}_h }} \Vert {{h}}^{-\frac{1}{2}}{\varvec{\eta }} \Vert _{0 ,{\mathcal {F}_h }}\\ \le&\, a_1 \Vert ( \varvec{u},{\varvec{\lambda }}) \Vert _{{\varvec{U}}(h)}\Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}. \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \left| B_h(\varvec{v},{\varvec{\eta }};q) \right| \le&\, \Vert \varvec{v} \Vert _{0 ,\varOmega }\Vert \nabla _{{\varvec{\alpha }},h}q \Vert _{0 ,\varOmega } + C \Vert \varvec{v} \Vert _{0 ,\varOmega } \Vert {{h}}^{-\frac{1}{2}}{[[ q ]] _N} \Vert _{0 ,{\mathcal {F}_h }} \\&+ {\mathfrak {c}}\Vert {{h}}^{-\frac{1}{2}}{\varvec{\eta }} \Vert _{0 ,{\mathcal {F}_h }} \Vert {{h}}^{-\frac{1}{2}}{[[ q ]] _N} \Vert _{0 ,{\mathcal {F}_h }}\\ \le&\, a_2 \Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}\Vert q \Vert _{Q(h)}. \end{aligned} \end{aligned}$$

\(\square \)

Lemma 10.2

For \({\varvec{\alpha }}\in K \text { with } {\varvec{\alpha }}\not = \varvec{{0}}\), given that \({\mathfrak {a}}>0\) is large enough, \({\mathfrak {b}}>0\) and \({\mathfrak {c}}>0\), there exists a \(C>0\) independent of h, such that

$$\begin{aligned} \begin{aligned} A_h(\varvec{u},{\varvec{\lambda }};\varvec{u},{\varvec{\lambda }}) \ge C |( \varvec{u},{\varvec{\lambda }}) |_{{\varvec{U}}(h)}^2 \quad \quad \forall (\varvec{u},{\varvec{\lambda }}) \in {\varvec{U}}^{\varvec{\alpha }}_h. \end{aligned} \end{aligned}$$
(10.1)

Proof

$$\begin{aligned} \begin{aligned} A_h(\varvec{u},{\varvec{\lambda }};\varvec{u},{\varvec{\lambda }}) \ge&\, \Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}\times \varvec{u} \Vert _{0 ,\varOmega }^2 -2C \Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]] _T \Vert _{0 ,{\mathcal {F}_h }} \Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}\times \varvec{u} \Vert _{0 ,\varOmega }\\&+ {\mathfrak {a}}\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]] _T \Vert _{0 ,{\mathcal {F}_h }}^2 +{\mathfrak {b}}\Vert {{h}}^\frac{1}{2}{[[ \varvec{u} ]] _N} \Vert _{0 ,{\mathcal {F}_h }}^2 +{\mathfrak {c}}\Vert {{h}}^{-\frac{1}{2}}{\varvec{\lambda }} \Vert _{0 ,{\mathcal {F}_h }} ^2\\ {=}&\, \frac{1}{2}\Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}{\times } \varvec{u} \Vert _{0 ,\varOmega }^2 {+}\frac{1}{2} \left( \Vert \epsilon ^{-\frac{1}{2}}\nabla _{{\varvec{\alpha }},h}\times \varvec{u} \Vert _{0 ,\varOmega } {-}2C \Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]] _T \Vert _{0 ,{\mathcal {F}_h }} \right) ^2\\&+({\mathfrak {a}}-2C^2)\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]] _T \Vert _{0 ,{\mathcal {F}_h }}^2 +{\mathfrak {b}}\Vert {{h}}^\frac{1}{2}{[[ \varvec{u} ]] _N} \Vert _{0 ,{\mathcal {F}_h }}^2 +{\mathfrak {c}}\Vert {{h}}^{-\frac{1}{2}}{\varvec{\lambda }} \Vert _{0 ,{\mathcal {F}_h }} ^2\\ \ge&\, C |( \varvec{u},{\varvec{\lambda }}) |_{{\varvec{U}}(h)}^2. \end{aligned} \end{aligned}$$

where we used the estimate in Lemma 10.1. \(\square \)

Appendix B: Inf-Sup Condition

For the proof of Lemma 5.5, we first need the following auxiliary result.

Lemma 10.3

Given N real numbers \(\{\alpha _1,\dots ,\alpha _N\}\) let \( \beta =\frac{1}{N}\sum _{j=1}^{N}\alpha _j\). Then,

$$\begin{aligned} \begin{aligned} \sum _{j=1}^{N} \left| \alpha _j-\beta \right| ^2\le C \sum _{j=1}^{N-1} \left| \alpha _{j+1}-\alpha _j \right| ^2, \end{aligned} \end{aligned}$$
(10.2)

where \( C>0 \) depends only on N.

Proof

For any j, the Cauchy-Schwarz inequality gives

$$\begin{aligned} \begin{aligned} \left| \alpha _j-\beta \right| ^2 = \frac{1}{N^2} \left| \sum _{i=1}^{N}(\alpha _j-\alpha _i) \right| ^2 \le \frac{N-1}{N^2} \sum _{i=1}^{N}\left| \alpha _j-\alpha _i \right| ^2. \end{aligned} \end{aligned}$$

Summing over j, we obtain

$$\begin{aligned} \begin{aligned} \sum _{j=1}^{N} \left| \alpha _j-\beta \right| ^2&\le \frac{2(N-1)^2}{N^2}\sum _{j=1}^{N} \sum _{i=1}^{j-1}\sum _{k=i}^{j-1} \left| \alpha _{k+1}-\alpha _k \right| ^2\\&\le \frac{2(N-1)^2}{N^2}\sum _{j=1}^{N} \sum _{i=1}^{N-1}\sum _{k=1}^{N-1} \left| \alpha _{k+1}-\alpha _k \right| ^2 \\&\le \frac{2(N-1)^4}{N^2}\sum _{j=1}^{N-1}\left| \alpha _{j+1}-\alpha _j \right| ^2 \\&= C(N)\sum _{j=1}^{N-1}\left| \alpha _{j+1}-\alpha _j \right| ^2. \end{aligned} \end{aligned}$$

\(\square \)

Proof of Lemma 5.5

Given \( q_h\in Q^{\varvec{\alpha }}_h\), we construct a function \( \chi \in Q^{{\varvec{\alpha }},c}_h\) as follows: At every node of the mesh \( {\mathcal {T}_h }\) corresponding to a Lagrangian type degree of freedom for \( Q^{{\varvec{\alpha }},c}_h\), the value of \( \chi \) is set to the average of the values of \( q_h\) at that node.

For each \(K\in {\mathcal {T}_h }\), let \(\mathcal {N}_K=\{ \varvec{x}^{(j)}_K,j=1,\ldots ,m \}\) be the Lagrange nodes (points) of K and \( \{ \phi ^{(j)}_K,j=1,\ldots ,m \} \) the corresponding (local) basis functions satisfying \( \phi ^{(j)}_K(\varvec{x}^{(i)}_K)=\delta _{ij} \). Set \( \mathcal {N}=\cup _{K\in {\mathcal {T}_h }} \mathcal {N}_K\). We view \( \mathcal {N}\) as the union of two classes:

$$\begin{aligned} \begin{aligned} \mathcal {N}_i&=\{ \nu \in \mathcal {N}:\nu \text { is interior to an element}\},\\ \mathcal {N}_f&=\{\nu \in \mathcal {N}: \nu \in \partial K, \text { for some } K \in {\mathcal {T}_h }\},\\ \end{aligned} \end{aligned}$$

We note that \(\mathcal {N}_f\) can be divided into two sets \(\mathcal {N}_f^i\) and \(\mathcal {N}_f^b\): \(\mathcal {N}_f^i\) is the set of nodes on interior faces, while \(\mathcal {N}_f^b\) is the set of nodes on the boundary of a face \(f \subset \partial \varOmega \). As \(\varOmega \) and \({\mathcal {T}_h }\) are both periodic, for every \(\nu ^1\in \mathcal {N}_f^b\), there exist a unique \(\nu ^2\) also in \(\mathcal {N}_f^b\) being the corresponding periodic point of \(\nu ^1\). From the definition \(Q^{{\varvec{\alpha }},c}_h=Q^{\varvec{\alpha }}_h\cap {H^1_{\mathrm {per}}(\varOmega ) }\), \(Q^{{\varvec{\alpha }},c}_h\) is a periodic conforming finite element space. To satisfy the periodicity of \(Q^{{\varvec{\alpha }},c}_h\), we can let \(\nu ^1\) and \(\nu ^2\) share the same degree of freedom. Then we regard \(\nu ^1\) and \(\nu ^2\) as the ’same’ node in our computational domain. Furthermore, the nodes in \(\mathcal {N}_f^b\) can therefore be considered as nodes in \(\mathcal {N}_f^i\). In the following discussion, we consider the nodes in \(\mathcal {N}_f^b\) and \(\mathcal {N}_f^i\) therefore in the same way.

For each \( \nu \in \mathcal {N}\), let \( \omega _\nu =\{K \in {\mathcal {T}_h }| \nu \in K \} \) and denote its cardinality by \( \left| \omega _\nu \right| \). If \(\nu \in \mathcal {N}_i\), then \( \left| \omega _\nu \right| =1 \), and if \(\nu \in \mathcal {N}_f\), \(\left| \omega _\nu \right| \ge 1\). Then the basis function \( \phi ^{(\nu )}\) in \(Q^{{\varvec{\alpha }},c}_h\) at the node \(\nu \in \mathcal {N}\) can be constructed as

$$\begin{aligned} \begin{aligned} \text {supp }\phi ^{(\nu )}= \bigcup _{K\in \omega _\nu }, \quad \phi ^{(\nu )}|_K=\phi ^{(j)}_K,\quad \varvec{x}^{(j)}_K=\nu . \end{aligned} \end{aligned}$$

Now, given \( q_h\in Q^{\varvec{\alpha }}_h\), written as \( q_h=\sum _{K\in {\mathcal {T}_h }} \sum _{j=1}^{m}\alpha ^{(j)}_K\phi ^{(j)}_K\), we define the function \( \chi \in Q^{{\varvec{\alpha }},c}_h\) by

$$\begin{aligned} \begin{aligned} \chi&=\sum _{\nu \in \mathcal {N}} \beta ^{(\nu )}\phi ^{(\nu )}, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \beta ^{(\nu )}&=\frac{1}{\left| \omega _\nu \right| } \sum _{\varvec{x}^{(j)}_K=\nu } \alpha ^{(j)}_K\qquad \text { for } \nu \in \mathcal {N}. \end{aligned} \end{aligned}$$

Now set \( \beta ^{(j)}_K=\beta ^{(\nu )}\) whenever \( \varvec{x}^{(j)}_K=\nu \). A simple scaling argument shows that \( \Vert \nabla _{\varvec{\alpha }}\phi ^{(j)}_K \Vert ^2_K \le ch^{d-2}_K\). Hence

$$\begin{aligned} \begin{aligned} \sum _{K\in {\mathcal {T}_h }} \Vert \nabla _{\varvec{\alpha }}(q_h-\chi ) \Vert _{0,K}^2&\le C\,m \sum _{K\in {\mathcal {T}_h }} h_K^{d-2} \sum _{j=1}^{m} \left| \alpha ^{(j)}_K-\beta ^{(j)}_K \right| ^2\\&\le C \sum _{\nu \in \mathcal {N}} h_\nu ^{d-2} \sum _{\varvec{x}^{(j)}_K=\nu ,\;\varvec{x}^{(j)}_K\in \mathcal {N}_K,\;K\in {\mathcal {T}_h }} \left| \alpha ^{(j)}_K-\beta ^{(\nu )} \right| ^2\\&= C \sum _{\nu \in \mathcal {N}_f} h_\nu ^{d-2} \sum _{\varvec{x}^{(j)}_K=\nu ,\;\varvec{x}^{(j)}_K\in \mathcal {N}_K,\;K\in {\mathcal {T}_h }} \left| \alpha ^{(j)}_K-\beta ^{(\nu )} \right| ^2,\\ \end{aligned} \end{aligned}$$
(10.3)

where in the last step, we remove the nodes in \(\mathcal {N}_i\) as they have no contribution by the definition of \(\beta ^{(\nu )}\).

We now temporarily focus on the case \( d = 2 \). For \( \nu \in \mathcal {N}_f\) we enumerate the elements of \( \omega _\nu \) as \( \{ K_{1}, \dots , K_{\left| \omega _\nu \right| } \} \) so that any consecutive pair \( K_{i} \), \(K_{i+1}\) in that list shares an edge. Then from Lemma 10.3, with some constant C depending only on \( \left| \omega _\nu \right| \), we have

$$\begin{aligned} \begin{aligned} \sum _{\varvec{x}^{(j)}_K=\nu } \left| \alpha ^{(j)}_K-\beta ^{(\nu )} \right| ^2 \le C \sum _{i=1}^{\left| \omega _\nu \right| -1} \left| \alpha _{K_{i}}^{j_{i}}-\alpha _{K_{i+1}}^{j_{i+1}} \right| ^2. \end{aligned} \end{aligned}$$
(10.4)

For \( d=3 \), it may not be possible to enumerate \( \omega _\nu \) in such a way. However, by allowing some repetitions of its elements, we can write \( \omega _\nu =\{ K_{l_1}, \ldots ,K_{l_{n(\nu )}} \} \) for some \( n(\nu )\), so that in this case also \( K_{l_i} \) and \( K_{l_{i+1}} \) share a face or an edge. Having done so, by applying Lemma 10.3 to the list obtained by removing all repetitions of elements of \( \omega _\nu \), we obtain

$$\begin{aligned} \begin{aligned} \sum _{\varvec{x}^{(j)}_K=\nu } \left| \alpha ^{(j)}_K-\beta ^{(\nu )} \right| ^2 \le C \sum _{i=1}^{n(\nu )-1} \left| \alpha _{K_{i}}^{j_{i}}-\alpha _{K_{i+1}}^{j_{i+1}} \right| ^2. \end{aligned} \end{aligned}$$
(10.5)

Using (10.4) for \(d=2\), or (10.5) if \(d=3\), from (10.3) we have

$$\begin{aligned} \begin{aligned} \sum _{K\in {\mathcal {T}_h }} \Vert \nabla _{\varvec{\alpha }}(q_h-\chi ) \Vert _{0,K}^2 \le&C \sum _{f\in {\mathcal {F}_h }}\sum _{\nu \in f} h_\nu ^{d-2}\left| \alpha _{K^+}^{j_{\nu }^+}-\alpha _{K^-}^{j_{\nu }^-} \right| ^2,\\ \end{aligned} \end{aligned}$$
(10.6)

with \( \varvec{x}^{j^{+}_{\nu }}_{K_+}=\varvec{x}^{j^{-}_{\nu }}_{K_-}=\nu \). Note that \( \alpha ^{j^{+}_{\nu }}_{K_+}-\alpha ^{j^{-}_{\nu }}_{K_-} \) is the jump in the values of \(q_h\) at \(\nu \) across f. Also, since the mesh \({\mathcal {T}_h }\) is locally quasi-uniform, it follows that

$$\begin{aligned} \begin{aligned} \sum _{\nu \in f} h_\nu ^{d-2} \left| \alpha ^{j^{+}_{\nu }}_{K_+}-\alpha ^{j^{-}_{\nu }}_{K_-} \right| ^2&\le C h_f^{d-2}\Vert {[[ q_h ]] _N} \Vert _{L^{\infty }(f)}^2\\&\le C h_f^{-1}\Vert {[[ q_h ]] _N} \Vert _{0,f}^2, \end{aligned} \end{aligned}$$
(10.7)

where the constant C depends on the number of nodes in f . The required result now follows from (10.6)–(10.7). \(\square \)

Proof of Theorem 5.2

Fix \(0 \not = q \in Q^{\varvec{\alpha }}_h\), and use the \(Q^{\varvec{\alpha }}_h\)-decomposition as \(q = q_0 + q_1\) with \(q_0\in Q^{{\varvec{\alpha }},c}_h\) and \(q_1\in Q_h^{{\varvec{\alpha }},\perp }\). Choose \(\varvec{v}_0= - \nabla _{\varvec{\alpha }}q_0 \in {\varvec{V}}^{\varvec{\alpha }}_h\cap {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl}^0_{\varvec{\alpha }};\varOmega ) }\), then we have

$$\begin{aligned} \begin{aligned} B_h(\varvec{v}_0, \varvec{{0}}; q_0)=\Vert \nabla _{\varvec{\alpha }}q_0\Vert ^2_{0,\varOmega }=\Vert q_0\Vert ^2_{Q(h)}. \end{aligned} \end{aligned}$$
(10.8)
$$\begin{aligned} \begin{aligned} \Vert ( \varvec{v}_0,\varvec{{0}}) \Vert _{{\varvec{U}}(h)}^2&=\Vert {{h}}^\frac{1}{2}{[[ \varvec{v}_0 ]] _N} \Vert _{0,{\mathcal {F}_h }}^2 +\Vert \varvec{v}_0 \Vert ^2_{0, \varOmega }\\&\le C \sum _{K\in T_h} h_K \Vert \nabla _{\varvec{\alpha }}q_0\Vert ^2_{0,\partial K} +\Vert \nabla _{\varvec{\alpha }}q_0 \Vert _{0 ,\varOmega }^2\\&\le C\Vert \nabla _{\varvec{\alpha }}q_0 \Vert _{0 ,\varOmega }^2 = C \Vert q_0 \Vert _{Q(h)} ^2, \end{aligned} \end{aligned}$$
(10.9)

where we use \( \Vert \nabla _{\varvec{\alpha }}\phi \Vert _{0, \partial K}\le C h_K^{- \frac{1}{2}}\Vert \nabla _{\varvec{\alpha }}\phi \Vert _{0,K}\), for any \(\phi = {e^{i{\varvec{\alpha }}\cdot \varvec{x}}}\tilde{\phi }\) and \( \tilde{\phi }\in \mathcal {S}_l(K)\) with \(C>0\), which we obtain from the trace inequality \( \Vert \nabla \tilde{\phi }\Vert _{0, \partial K}\le C h_K^{- \frac{1}{2}}\Vert \nabla \tilde{\phi }\Vert _{0,K}\), with \(C>0\). Let \({\varvec{\nu }}_1= - {[[ q_1 ]] _N}\). Using Lemma 5.6, we obtain

$$\begin{aligned} \begin{aligned} B_h(\varvec{{0}},{\varvec{\nu }}_1; q_1)&={\mathfrak {c}}\int _ {{\mathcal {F}_h }}{{h}}^{-1}{[[ q_1 ]] _N}^2 ds \ge {\mathfrak {c}}C_1^2 \Vert q_1\Vert _{Q(h)}^2,\\ \Vert ( \varvec{{0}},{\varvec{\nu }}_1) \Vert _{{\varvec{U}}(h)}&\le \Vert q_1 \Vert _{Q(h)}. \end{aligned} \end{aligned}$$
(10.10)

Let \((\varvec{v}, {\varvec{\nu }})=(\varvec{v}_0,\varvec{{0}})+\delta (\varvec{{0}}, {\varvec{\nu }}_1)\) with \(\delta >0\). Since \(q_0\in Q^{{\varvec{\alpha }},c}_h\), \({[[ q_0 ]] _N} =\varvec{{0}}\) on \({\mathcal {F}_h }\) and \(B_h(\varvec{{0}},{\varvec{\nu }}_1;q_0)=c \int _ {{\mathcal {F}_h }}{{h}}^{-1}{[[ q_0 ]] _N}\cdot \bar{{\varvec{\nu }}}_1 ds =0\), we have

$$\begin{aligned} \begin{aligned} B_h(\varvec{v}, {\varvec{\nu }};q)&= B_h(\varvec{v}_0, \varvec{{0}}; q_0)+ B_h(\varvec{v}_0,\varvec{{0}}; q_1)+\delta B_h(\varvec{{0}}, {\varvec{\nu }}_1; q_1)\\&\ge \Vert q_0 \Vert ^2_{Q(h)} \quad + \delta {\mathfrak {c}}C_1^2 \Vert q_1 \Vert ^2_{Q(h)} - | B_h (\varvec{v}_0,0,q_1)|. \end{aligned} \end{aligned}$$

Using Theorem 10.1 and (10.9), we obtain

$$\begin{aligned} \begin{aligned} | B_h( \varvec{v}_0, \varvec{{0}};q_1)|&\le C \Vert ( \varvec{v}_0,\varvec{{0}}) \Vert _{{\varvec{U}}(h)}\Vert q_1 \Vert _{Q(h)}\\&\le C \zeta \Vert q_0 \Vert _{Q(h)}^2 + \frac{C}{\zeta } \Vert q_1 \Vert _{Q(h)}^2,\\ \end{aligned} \end{aligned}$$

with any \(\zeta >0\). Choosing suitable \(\delta \) and \(\zeta \), we have

$$\begin{aligned} \begin{aligned} B_h(\varvec{v},{\varvec{\nu }}; q ) \ge (1-C \zeta ) \Vert q_0 \Vert _{Q(h)}^2 +(\delta {\mathfrak {c}}C_1^2-\frac{C}{\zeta })\Vert q_1 \Vert _{Q(h)}^2 \ge k_1 \Vert q \Vert _{Q(h)}^2, \end{aligned} \end{aligned}$$
(10.11)

with \(k_1>0\). From (10.9) and (10.10), we have

$$\begin{aligned} \begin{aligned} \Vert ( \varvec{v},{\varvec{\nu }}) \Vert _{{\varvec{U}}(h)}=\Vert ( \varvec{v}_0,\varvec{{0}}) \Vert _{{\varvec{U}}(h)}+\delta \Vert ( \varvec{{0}},{\varvec{\nu }}_1) \Vert _{{\varvec{U}}(h)} \le k_2 \Vert q \Vert _{Q(h)}. \end{aligned} \end{aligned}$$

Then the result follows with \(k=k_1/k_2\). \(\square \)

Appendix C: Ellipticity on the Kernel

Lemma 10.4

$$\begin{aligned} \nabla _{\varvec{\alpha }}\times {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }= \nabla _{\varvec{\alpha }}\times {{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }. \end{aligned}$$

Proof

Let \(\varvec{v}\in {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }\). By [16, Theorem 3.1], there exists \(\varvec{w}\in {{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }\) and \( \phi \in {H^1_{\mathrm {per}}(\varOmega ) }\) such that

$$\begin{aligned}\nabla _{\varvec{\alpha }}\times \varvec{v}= \nabla _{\varvec{\alpha }}\times \varvec{w}+ \nabla _{\varvec{\alpha }}\phi , \quad \nabla _{\varvec{\alpha }}\cdot \varvec{w}=0.\end{aligned}$$

By Lemma 3.1, since \(\nabla _{\varvec{\alpha }}\cdot \nabla _{\varvec{\alpha }}\times \varvec{v}=0\), we obtain \(\phi =0\). Therefore

$$\begin{aligned} \nabla _{\varvec{\alpha }}\times \varvec{v}= \nabla _{\varvec{\alpha }}\times \varvec{w}\in \nabla _{\varvec{\alpha }}\times {{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }. \end{aligned}$$

implying \(\nabla _{\varvec{\alpha }}\times {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }\subset \nabla _{\varvec{\alpha }}\times {{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }\). The other inclusion is obvious as \({{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }\subset {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }\). \(\square \)

Proof of Lemma 5.7

Lemma 10.4 implies that \(\nabla _{\varvec{\alpha }}\times \) maps \({{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }\) onto \(\nabla _{\varvec{\alpha }}\times {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }\). Let K denote the orthogonal complement of the kernel of \(\nabla _{\varvec{\alpha }}\times \) in \({{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }\). Then, the restriction \(\nabla _{\varvec{\alpha }}\times |_{K}\) of \(\nabla _{\varvec{\alpha }}\times \) to K also maps \({{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }\) onto \(\nabla _{\varvec{\alpha }}\times {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }\). In addition to being onto, \(\nabla _{\varvec{\alpha }}\times |_{K}\) is continuous, one-to-one and has a continuous inverse due to [16, Theorem 3.1]. The operator \(R=(\nabla _{\varvec{\alpha }}\times |_{K})^{-1}\nabla _{\varvec{\alpha }}\times \) satisfies the conclusion of the lemma. \(\square \)

Lemma 10.5

For \(\varvec{u}\in {\varvec{L}}^2(\varOmega )\), we have the following estimate for the auxiliary problem (10.12):

$$\begin{aligned} \begin{aligned} \Vert \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z} \Vert _{0 ,\varOmega }+\Vert \varvec{z} \Vert _{0 ,\varOmega } +\Vert \nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z} \Vert _{0 ,\varOmega }\\ +\Vert \nabla _{\varvec{\alpha }}\psi \Vert _{0 ,\varOmega } + \Vert \psi \Vert _{0 ,\varOmega }\le C_m \Vert \varvec{u} \Vert _{0 ,\varOmega }. \end{aligned} \end{aligned}$$

Proof

Taking the periodic boundary conditions into consideration and integrating by parts, we have

$$\begin{aligned} \begin{aligned} \Vert \varvec{u} \Vert _{0 ,\varOmega } ^2&=(\varvec{u},\varvec{u})\\&=\,(\nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z}-\nabla _{\varvec{\alpha }}\psi ,\nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z}-\nabla _{\varvec{\alpha }}\psi )\\&=\,(\nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z},\nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z})+(\nabla _{\varvec{\alpha }}\psi ,\nabla _{\varvec{\alpha }}\psi )\\&-2Re(\nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z},\nabla _{\varvec{\alpha }}\psi )\\&=\,(\nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z},\nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z})+(\nabla _{\varvec{\alpha }}\psi ,\nabla _{\varvec{\alpha }}\psi )\\&-2Re( \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z},\nabla _{\varvec{\alpha }}\times (\nabla _{\varvec{\alpha }}\psi ))\\&=\,\Vert \nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z} \Vert _{0 ,\varOmega }^2+\Vert \nabla _{\varvec{\alpha }}\psi \Vert _{0 ,\varOmega }^2,\\ \end{aligned} \end{aligned}$$

where \(\nabla _{\varvec{\alpha }}\times (\nabla _{\varvec{\alpha }}\psi )=\varvec{{0}}\). Combining with the estimate given in Theorem 3.3 gives the result. \(\square \)

Proof of Theorem 5.3

From the seminorm ellipticity in Lemma 10.2 , it is sufficient to show that there exist \(C>0\), such that

$$\begin{aligned} \Vert \varvec{u} \Vert _{0 ,\varOmega } \le C |( \varvec{u},{\varvec{\nu }}) |_{{\varvec{U}}(h)}\quad \forall (\varvec{u},{\varvec{\nu }}) \in {\mathrm {Ker}(B_h)}.\end{aligned}$$

Now fix \((\varvec{u}, {\varvec{\nu }}) \in {\mathrm {Ker}(B_h)}\), and let \((\varvec{z}, \psi )\in {\varvec{V}}\times Q \) satisfying

$$\begin{aligned} \begin{aligned} \nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z}-\nabla _{\varvec{\alpha }}\psi&=\varvec{u},\\ \nabla _{\varvec{\alpha }}\cdot \varvec{z}&=0, \end{aligned} \end{aligned}$$
(10.12)

with periodic boundary conditions. Thereby,

$$\begin{aligned} \begin{aligned} \Vert \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z} \Vert _{0 ,\varOmega }+\Vert \varvec{z} \Vert _{0 ,\varOmega } +\Vert \nabla _{\varvec{\alpha }}\times \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{z} \Vert _{0 ,\varOmega }\\ +\,\Vert \nabla _{\varvec{\alpha }}\psi \Vert _{0 ,\varOmega } + \Vert \psi \Vert _{0 ,\varOmega } \le C_m \Vert \varvec{u} \Vert _{0 ,\varOmega }, \end{aligned} \end{aligned}$$
(10.13)

where the detailed derivation of (10.13) is given in Lemma 10.5. Set \(\varvec{w}= \epsilon ^{-1} \nabla _{\varvec{\alpha }}\times \varvec{z}\), clearly \( \varvec{w}\in {{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }\). Then, from Theorem 5.7 and the inequality (10.13) there exists \(\varvec{w}_0 \in {{\varvec{H}}^1_{\mathrm {per}}(\varOmega ) }\) such that

$$\begin{aligned} \begin{aligned} \nabla _{\varvec{\alpha }}\times \varvec{w}_0 =&\nabla _{\varvec{\alpha }}\times \varvec{w},\\ \Vert \varvec{w}_0 \Vert _{1,\varOmega } \le C \Vert \varvec{w}\Vert _{{{\varvec{H}}_{\mathrm {per}}(\mathrm {curl};\varOmega ) }} \le&\, C_m \Vert \varvec{u}\Vert _{0, \varOmega } . \end{aligned} \end{aligned}$$
(10.14)

Multiplying the first equation of (10.12) by \(\varvec{u}\) and integrating by parts, we obtain

$$\begin{aligned} \begin{aligned} \Vert \varvec{u}\Vert _{0, \varOmega }^2=&\int _ {\varOmega }\varvec{w}_0 \cdot \overline{ \nabla _{{\varvec{\alpha }},h}\times \varvec{u}} d\varvec{x}- \int _ {{\mathcal {F}_h }}\varvec{w}_0 \cdot {\overline{[[ \varvec{u} ]]}_T}d s + \int _ {\varOmega }\psi \overline{\nabla _{{\varvec{\alpha }},h}\cdot \varvec{u}} d\varvec{x}\\&- \int _ {{\mathcal {F}_h }}\{\{ \psi \}\} { \overline{[[ \varvec{u} ]]} }ds. \end{aligned} \end{aligned}$$

Since \((\varvec{u},{\varvec{\nu }}) \in {\mathrm {Ker}(B_h)}\), we choose \(\psi _h\) as the \(L^2\)-projection of \(\psi \) in \(Q^{\varvec{\alpha }}_h\), then we have \(B_h(\varvec{u}, {\varvec{\nu }};\psi _h)=0\). Using the fact that \(\psi \in Q\) in the auxiliary problem (10.12) and \([[ \psi ]]_N=0\) on \({\mathcal {F}_h }\),

$$\begin{aligned} \begin{aligned} \Vert \varvec{u}\Vert _{0, \varOmega }^2=&\int _ {\varOmega }\varvec{w}_0 \cdot \overline{ \nabla _{{\varvec{\alpha }},h}\times \varvec{u}} d\varvec{x}- \int _ {{\mathcal {F}_h }}\varvec{w}_0 \cdot {\overline{[[ \varvec{u} ]]}_T} d s + \int _ {\varOmega }(\psi -\psi _h) \overline{\nabla _{{\varvec{\alpha }},h}\cdot \varvec{u}} d\varvec{x}\\&- \int _ {{\mathcal {F}_h }}\{\{ \psi -\psi _h \}\} {\overline{[[ \varvec{u} ]]}} ds - \int _ {{\mathcal {F}_h }}{\mathfrak {c}}{{h}}^{-1} {\varvec{\nu }}\cdot { \overline{[[ \psi -\psi _h ]]}} ds. \end{aligned} \end{aligned}$$

Using (10.14), we have

$$\begin{aligned} \begin{aligned} \left| \int _ {\varOmega }\varvec{w}_0 \cdot \overline{ \nabla _{{\varvec{\alpha }},h}\times \varvec{u}}d\varvec{x}\right| \le \Vert \varvec{w}_0 \Vert _{1,\varOmega }\Vert \nabla _{{\varvec{\alpha }},h}\times \varvec{u}\Vert _{0, \varOmega } \le C_m \Vert \varvec{u}\Vert _{0, \varOmega } | \varvec{u}|_{V(h)}. \end{aligned} \end{aligned}$$

Using trace inequalities and (10.14), we have

$$\begin{aligned} \begin{aligned} \left| \int _ {{\mathcal {F}_h }}\varvec{w}_0 \cdot { \overline{[[ \varvec{u} ]]}_T} d s \right|&\le C \left( \sum _{K \in T_h} h_K \epsilon _K\Vert \varvec{w}_0\Vert _{0, \partial K}^2\right) ^\frac{1}{2}\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]]_T \Vert _{0,{\mathcal {F}_h }}\\&\le C \Vert \varvec{w}_0\Vert _{1, \varOmega }\Vert {{e}}^{-\frac{1}{2}}{{h}}^{-\frac{1}{2}}[[ \varvec{u} ]]_T \Vert _{0,{\mathcal {F}_h }} \le C \Vert \varvec{u}\Vert _{0, \varOmega } | \varvec{u}|_{V(h)}. \end{aligned} \end{aligned}$$

Since \(\psi _h\) is the \(L^2\)-projection of \(\psi \), the third term is zero. Using (10.13), we obtain the following estimate for the last two terms:

$$\begin{aligned}\nonumber \begin{aligned} \left| \int _ {{\mathcal {F}_h }}\{\{ \psi -\psi _h \}\} {\overline{[[ \varvec{u} ]]} }ds \right|&\le C \left( \sum _{K \in T_h} h_k^{-1} \Vert \psi -\psi _h \Vert _{0, \partial K}^2\right) ^\frac{1}{2}\left( \sum _{K \in T_h} \Vert {{h}}^\frac{1}{2}{[[ \varvec{u} ]] _N} \Vert ^2_{0,\partial K} \right) ^\frac{1}{2}\\&\le C \left( \sum _{K \in T_h} h_k^{-1} \Vert \psi -\psi _h \Vert _{0, \partial K}^2\right) ^\frac{1}{2}| \varvec{u}|_{V(h)}\\&\le C \left( \sum _{K \in T_h} \Vert \nabla _{{\varvec{\alpha }},h}\psi \Vert _{0, K}^2 + \Vert \psi \Vert _{0, K}^2 \right) ^\frac{1}{2}| \varvec{u}|_{V(h)}\\&\le C \Vert \varvec{u}\Vert _{0, \varOmega } | \varvec{u}|_{V(h)}. \end{aligned}\\ \begin{aligned} \left| \int _ {{\mathcal {F}_h }}{{h}}^{-1} {\varvec{\nu }}\cdot { \overline{[[ \psi -\psi _h ]]}} ds \right|&\le C \left( \sum _{K \in T_h} h_K^{-1} \Vert \psi -\psi _h \Vert _{0, \partial K}^2\right) ^\frac{1}{2}\left( \int _ {{\mathcal {F}_h }}{{h}}^{-1} |{\varvec{\nu }}|^2 ds \right) ^\frac{1}{2}\\&\le C \Vert \varvec{u}\Vert _{0, \varOmega } \Vert {\varvec{\nu }} \Vert _{M^{\varvec{\alpha }}_h}. \end{aligned} \end{aligned}$$

From the results above, we have \(\Vert \varvec{u}\Vert _{0, \varOmega } \le C |( \varvec{u},{\varvec{\nu }}) |_{{\varvec{U}}(h)}\). \(\square \)

Appendix D: The Convergence of the Operator

Proof of Theorem 5.4

Let \((\varvec{u},p)\) be the analytical solution of (3.7), and \((\varvec{u}_h, {\varvec{\lambda }}_h, p_h)\) be the numerical solution of (5.4). By the triangle inequality and the definition of \( \Vert ( \cdot ,\cdot ) \Vert _{{\varvec{U}}(h)}\), we have

$$\begin{aligned} \begin{aligned} \Vert ( \varvec{u}-\varvec{u}_h,{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)} \le \Vert ( \varvec{u}-\varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}+\Vert ( \varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)}, \end{aligned} \end{aligned}$$
(10.15)

for any \((\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}^{\varvec{\alpha }}_h\). First, we take \((\varvec{v},{\varvec{\eta }}) \in {\mathrm {Ker}(B_h)}\). Since \((\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \in {\mathrm {Ker}(B_h)}\), employing the ellipticity property of Theorem 5.3 and the definition of \(R^1_h\), we have

$$\begin{aligned} \begin{aligned} b\Vert ( \varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)}^2 \le&\, A_h(\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h;\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \\ =\,&A_h(\varvec{v}-\varvec{u},{\varvec{\eta }};\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \\&\quad +A_h(\varvec{u}-\varvec{u}_h,-{\varvec{\lambda }}_h;\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \\ =\,&A_h(\varvec{v}-\varvec{u},{\varvec{\eta }};\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \\&- B_h(\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h;p-p_h) \\&\quad +R^1_h(\varvec{u}-\varvec{u}_h,p-p_h;\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h)\\ =\,&A_h(\varvec{v}-\varvec{u},{\varvec{\eta }};\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \\&- B_h(\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h;p-q) +R^1_h(\varvec{u},p;\varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h)\\ \le&\, a_1 \Vert ( \varvec{v}-\varvec{u}_h,{\varvec{\eta }}-{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)}\Vert ( \varvec{v}-\varvec{u},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)} \\&{+}\, a_2 \Vert ( \varvec{v}{-}\varvec{u}_h,{\varvec{\eta }}{-}{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)} \Vert p{-}q \Vert _{Q(h)}{+}R^1_h(\varvec{u},p;\varvec{v}{-}\varvec{u}_h,{\varvec{\eta }}{-}{\varvec{\lambda }}_h), \end{aligned} \end{aligned}$$
(10.16)

for any \(q\in Q^{\varvec{\alpha }}_h\). Combining (10.15) and (10.16), we have

$$\begin{aligned} \begin{aligned} \Vert ( \varvec{u}-\varvec{u}_h,{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)} \le&\left( {1+\frac{a_1}{b}}\right) \inf _{(\varvec{v},{\varvec{\eta }}) \in {\mathrm {Ker}(B_h)}} \Vert ( \varvec{u}-\varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}\\&+ \frac{a_2}{b} \inf _{q\in Q^{\varvec{\alpha }}_h}\Vert p-q \Vert _{Q(h)}+\frac{1}{b} \mathcal {R}^1_h(\varvec{u},p) . \end{aligned} \end{aligned}$$
(10.17)

Next, we prove that

$$\begin{aligned} \begin{aligned} \inf _{(\varvec{v},{\varvec{\eta }}) \in {\mathrm {Ker}(B_h)}} \Vert ( \varvec{u}-\varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)} \le \left( {1+\frac{a_2}{k}}\right) \inf _{(\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}^{\varvec{\alpha }}_h} \Vert ( \varvec{u}-\varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)} +\frac{1}{k} \mathcal {R}^2_h(\varvec{u}) . \end{aligned} \end{aligned}$$
(10.18)

Let \((\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}^{\varvec{\alpha }}_h\), and consider the following problem: find \((\varvec{w},\nu ) \in {\varvec{U}}(h)\) such that

$$\begin{aligned} \begin{aligned} B_h(\varvec{w},\nu ;q) =B_h(\varvec{u}-\varvec{v},-{\varvec{\eta }};q) - R^2_h(\varvec{u};q) \qquad \forall q\in Q^{\varvec{\alpha }}_h. \end{aligned} \end{aligned}$$
(10.19)

Problem (10.19) admits a solution in \({\varvec{U}}(h)\) that is unique up to elements in \({\mathrm {Ker}(B_h)}\). The discrete inf-sup condition of Theorem 5.2 guarantees the existence of a solution \((\varvec{w},\nu ) \in {\varvec{U}}(h)\) satisfying

$$\begin{aligned} \begin{aligned} \Vert ( \varvec{w},\nu ) \Vert _{{\varvec{U}}(h)}&\le \frac{1}{k} \left( {\sup _{q\in Q^{\varvec{\alpha }}_h} \frac{B_h(\varvec{u}-\varvec{v},-{\varvec{\eta }};q ) }{\Vert q \Vert _{Q(h)}} + \sup _{q\in Q^{\varvec{\alpha }}_h}\frac{R^2_h(\varvec{u};q)}{\Vert q \Vert _{Q(h)}} }\right) \\&\le \frac{a_2}{k}\Vert ( \varvec{u}-\varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)} +\frac{1}{k}\mathcal {R}^2_h(\varvec{u}) ,\\ \end{aligned} \end{aligned}$$
(10.20)

where we have used the continuity of \(B_h(\cdot ,\cdot ;\cdot ) \), the definition of the norm \(\Vert ( \cdot ,\cdot ) \Vert _{{\varvec{U}}(h)}\), and the definition of \(\mathcal {R}^2_h(\cdot ) \). From (10.19), \(B_h(\varvec{w}+\varvec{v},\nu +{\varvec{\eta }};q) =0\), for any \(q\in Q^{\varvec{\alpha }}_h\), so that \((\varvec{w}+\varvec{v},\nu +{\varvec{\eta }}) \in {\mathrm {Ker}(B_h)}\). Therefore, since

$$\begin{aligned} \Vert ( \varvec{u}-(\varvec{v}+\varvec{w}),{\varvec{\eta }}+ \nu ) \Vert _{{\varvec{U}}(h)} \le \Vert ( \varvec{u}-\varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)} +\Vert ( \varvec{w},\nu ) \Vert _{{\varvec{U}}(h)}, \end{aligned}$$

for any \((\varvec{v},{\varvec{\eta }})\in {\varvec{U}}(h)\), taking into account (10.20), we obtain (10.18). This, together with (10.17), yields

$$\begin{aligned} \begin{aligned} \Vert ( \varvec{u}-\varvec{u}_h,{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)} \le&\, C \Big ( \inf _{(\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}^{\varvec{\alpha }}_h} \Vert ( \varvec{u}-\varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}\\&+\inf _{q \in Q^{\varvec{\alpha }}_h} \Vert p-q \Vert _{Q(h)} + \mathcal {R}^1_h(\varvec{u},p) + \mathcal {R}^2_h(\varvec{u}) \Big ) , \end{aligned} \end{aligned}$$

where the constant C depends on \(a_1\), \(a_2\) and \(k_1\). Choosing \({\varvec{\eta }}=\varvec{{0}}\) gives the error bound for \((\varvec{u}-\varvec{u}_h,{\varvec{\lambda }}_h)\).

We now turn to the bound for \(p-p_h\). Again by the triangle inequality, we have

$$\begin{aligned} \begin{aligned} \Vert p-p_h \Vert _{Q(h)} \le \Vert p-q \Vert _{Q(h)} +\Vert q-p_h \Vert _{Q(h)}, \end{aligned} \end{aligned}$$
(10.21)

for any \(q \in Q^{\varvec{\alpha }}_h\). Since

$$\begin{aligned} \begin{aligned} A_h(\varvec{u}-\varvec{u}_h,-{\varvec{\lambda }}_h;\varvec{v},{\varvec{\eta }}) +B_h(\varvec{v},{\varvec{\eta }};p-q) +B_h(\varvec{v},{\varvec{\eta }};q-p_h) =R^1_h(\varvec{u},p;\varvec{v},{\varvec{\eta }}), \end{aligned} \end{aligned}$$

for any \((\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}(h)\), the discrete inf-sup condition of \(B_h(\cdot ,\cdot ;\cdot ) \) gives

$$\begin{aligned} \begin{aligned} \Vert q-p_h \Vert _{Q(h)}&\le \frac{1}{k} \sup _{(\varvec{{0}},\varvec{{0}}) \not =(\varvec{v},{\varvec{\eta }})\in {\varvec{U}}^{\varvec{\alpha }}_h} \frac{B_h(\varvec{v},{\varvec{\eta }};q-p_h) }{\Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}}\\&=\frac{1}{k}\sup _{(\varvec{{0}},\varvec{{0}}) \not =(\varvec{v},{\varvec{\eta }})\in {\varvec{U}}^{\varvec{\alpha }}_h} \frac{-A_h(\varvec{u}{-}\varvec{u}_h,{-}{\varvec{\lambda }}_h;\varvec{v},{\varvec{\eta }}) {-}B_h(\varvec{v},{\varvec{\eta }};p-q) +R^1_h(\varvec{u},p;\varvec{v},{\varvec{\eta }})}{\Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}}\\&\le \frac{a_1}{k} \Vert ( \varvec{u}{-}\varvec{u}_h,{\varvec{\lambda }}_h) \Vert _{{\varvec{U}}(h)} +\frac{a_2}{k} \Vert p-q \Vert _{Q(h)} + \frac{1}{k}\mathcal {R}^1_h(\varvec{u},p) . \end{aligned} \end{aligned}$$

This, together with (10.21), gives a bound for \(p-p_h\). \(\square \)

Proof of Lemma 5.8

Let \((\varvec{u},p)\) be the analytical solution of (3.7). Let \({\Pi _{{\varvec{V}}^{\varvec{\alpha }}_h}}\) be the \(L^2\)-projection onto \({\varvec{V}}^{\varvec{\alpha }}_h\). For \((\varvec{v},{\varvec{\eta }}) \in {\varvec{U}}^{\varvec{\alpha }}_h\),

$$\begin{aligned} \begin{aligned} \left| R^1_h(\varvec{u},p;\varvec{v},{\varvec{\eta }}) \right|&=\left| A_h(\varvec{u},\varvec{{0}};\varvec{v},{\varvec{\eta }}) +B_h(\varvec{v},{\varvec{\eta }};p) -a_h(\varvec{u},\varvec{v}) -b_h(\varvec{v},p) \right| \\&= \left| -\int _ {\varOmega }\overline{ \mathcal {L}({\varvec{v}}) } \cdot (\epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u}) d\varvec{x}+ \int _ {{\mathcal {F}_h }}\overline{[[ \varvec{v} ]]}_T\cdot (\epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u})d\varvec{x} \right| \\&= \left| -\int _ {\varOmega }\overline{ \mathcal {L}({\varvec{v}}) } \cdot {\Pi _{{\varvec{V}}^{\varvec{\alpha }}_h}}(\epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u}) d\varvec{x}+ \int _ {{\mathcal {F}_h }}\overline{[[ \varvec{v} ]]}_T\cdot (\epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u})ds \right| \\&= \left| \int _ {{\mathcal {F}_h }}\{\{ \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u}-{\Pi _{{\varvec{V}}^{\varvec{\alpha }}_h}}(\epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u}) \}\} \cdot \overline{[[ \varvec{v} ]]}_Tds \right| \\&\le C \left( {\sum _{K \in {\mathcal {T}_h }} h_K \Vert \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u}-{\Pi _{{\varvec{V}}^{\varvec{\alpha }}_h}}(\epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u}) \Vert _{0 ,\partial K}^2}\right) ^\frac{1}{2}\Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}\\&\le C h^{\min \{s, k+1\}} \Vert \epsilon ^{-1}\nabla _{\varvec{\alpha }}\times \varvec{u} \Vert _{s, \varOmega } \Vert ( \varvec{v},{\varvec{\eta }}) \Vert _{{\varvec{U}}(h)}. \end{aligned} \end{aligned}$$

Similarly, for \(q \in Q^{\varvec{\alpha }}_h\),

$$\begin{aligned} \begin{aligned} \left| R^2_h(\varvec{u};q) \right|&=\left| \overline{B_h(\varvec{u},\varvec{{0}};q) } - \overline{b_h(\varvec{u},q) } + c_h(p,q) \right| \\&\le \left| \int _ {\varOmega }\overline{\varvec{u}}\cdot { \mathcal {M}({q}) } d\varvec{x}- \int _ {{\mathcal {F}_h }}\overline{\{\{ \varvec{u} \}\}} \cdot {[[ q ]] _N} ds \right| \\&= \left| \int _ {\varOmega }\overline{{\Pi _{{\varvec{V}}^{\varvec{\alpha }}_h}}\varvec{u}} \cdot { \mathcal {M}({q}) } d\varvec{x}- \int _ {{\mathcal {F}_h }}\overline{ \{\{ \varvec{u} \}\}} \cdot {[[ q ]] _N} ds \right| \\&\le \left| \int _ {{\mathcal {F}_h }}\overline{\{\{ \varvec{u}-{\Pi _{{\varvec{V}}^{\varvec{\alpha }}_h}}\varvec{u} \}\}} \cdot {[[ q ]] _N} ds \right| \\&\le C \left( {\sum _{K\in {\mathcal {T}_h }}h_K \Vert \varvec{u}-{\Pi _{{\varvec{V}}^{\varvec{\alpha }}_h}}\varvec{u} \Vert ^2_{0 ,\partial K} }\right) ^\frac{1}{2}\Vert q \Vert _{Q(h)} \\&\le C h^{\min \{s, k+1\}}\Vert \varvec{u} \Vert _{s, \varOmega } \Vert q \Vert _{Q(h)}. \end{aligned} \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Cesmelioglu, A., Van der Vegt, J.J.W. et al. Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals. J Sci Comput 70, 922–964 (2017). https://doi.org/10.1007/s10915-016-0270-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0270-1

Keywords

Navigation