Skip to main content
Log in

Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We study the acoustic Helmholtz equation with impedance boundary conditions formulated in terms of velocity, and analyze the stability and convergence properties of lowest-order Raviart-Thomas finite element discretizations. We focus on the high-wavenumber regime, where such discretizations suffer from the so-called “pollution effect”, and lack stability unless the mesh is sufficiently refined. We provide wavenumber-explicit mesh refinement conditions to ensure the well-posedness and stability of discrete scheme, as well as wavenumber-explicit error estimates. Our key result is that the condition “\(k^2 h\) is sufficiently small”, where k and h respectively denote the wavenumber and the mesh size, is sufficient to ensure the stability of the scheme. We also present numerical experiments that illustrate the theory and show that the derived stability condition is actually necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The result is actually stated for \(s=1\), but the general case easily follows by interpolation. See also [14].

  2. Theorem 3.2 does not explicitly treat the adjoint problem, but one easily sees that \(\varvec{\xi }\) can be equivalently defined as the unique element of \(\varvec{{\mathcal {X}}}\) such that \(b({\overline{\varvec{\xi }}},{\varvec{v}}) = ({\overline{{\varvec{q}}}},{\varvec{v}})_\varOmega \) for all \({\varvec{v}}\in \varvec{{\mathcal {X}}}\).

References

  1. Adams, R.A., Fournier, J.J.: Sobolev Spaces, 2nd edn. Academic Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Babuška, I., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)

    Article  MathSciNet  Google Scholar 

  3. Chaumont-Frelet, T., Nicaise, S.: High-frequency behaviour of corner singularities in Helmholtz problems. ESAIM Math. Model. Numer. Anal. 5, 1803–1845 (2018)

    Article  MathSciNet  Google Scholar 

  4. Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems, IMA J. Numer. Anal. (2019). https://doi.org/10.1093/imanum/drz020

  5. Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. 56(4), 2288–2321 (2018)

    Article  MathSciNet  Google Scholar 

  6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  7. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (2012)

    MATH  Google Scholar 

  8. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. SIAM, Philadelphia (2013)

    Book  Google Scholar 

  9. Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Meth. Appl. Sci. 12, 365–368 (1990)

    Article  MathSciNet  Google Scholar 

  10. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer, New York (1988)

    Book  Google Scholar 

  11. Dhia, A.B.-B., Duclairoir, E., Legendre, G., Mercier, J.: Time-harmonic acoustic propagation in the presence of a shear flow. J. Comput. Appl. Math. 204, 428–439 (2007)

    Article  MathSciNet  Google Scholar 

  12. Diaz, J.: Approches analytiques et numériques de problèmes de transmission en propagation d’ondes en régime transitoire. Application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, Ph.D. Thesis, Paris 6, (2005)

  13. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  Google Scholar 

  14. Ern, A., Guermond, J.L.: Mollification in strongly Lipshitz domains with application to continuous and discrete De Rham complexes. Comput. Methods Appl. Math. 16(1), 51–75 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ern, A., Guermond, J.L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75, 918–932 (2018)

    Article  MathSciNet  Google Scholar 

  16. Gastaldi, L.: Mixed finite element methods in fluid structure systems. Numer. Math. 74, 153–176 (1996)

    Article  MathSciNet  Google Scholar 

  17. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, New York (1986)

    Book  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  19. Hetmaniuk, U.: Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5(3), 665–678 (2007)

    Article  MathSciNet  Google Scholar 

  20. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part I: the \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MathSciNet  Google Scholar 

  21. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49(3), 1210–1243 (2011)

    Article  MathSciNet  Google Scholar 

  22. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Science Publications, Oxford (2003)

    Book  Google Scholar 

  23. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  24. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5(1), 286–292 (1960)

    Article  Google Scholar 

  25. Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2nd Order Elliptic Problems, Mathematical Aspect of Finite Element Methods. Springer, New York (1977)

    MATH  Google Scholar 

  26. Retka, S., Marburg, S.: An infinite element for the solution of Galbrun equation. Z. Angew. Math. Mech. 93(2–3), 154–162 (2013)

    Article  MathSciNet  Google Scholar 

  27. Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28(128), 959–962 (1974)

    Article  MathSciNet  Google Scholar 

  28. Schoberl, J.: Commuting quasi-interpolation operators for mixed finite elements, Technical report preprint ISC-01-10-MATH, Texas A & M Univertsity (2001)

  29. Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163, 343–358 (1998)

    Article  MathSciNet  Google Scholar 

  30. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, New York (2007)

    MATH  Google Scholar 

  31. Wang, X., Bathe, K.: On mixed elements for acoustic fluid–structure interactions. Math. Models Methods Appl. Sci. 7(3), 329–343 (1997)

    Article  MathSciNet  Google Scholar 

  32. Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27(5), 563–572 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Chaumont-Frelet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaumont-Frelet, T. Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers. Calcolo 56, 49 (2019). https://doi.org/10.1007/s10092-019-0346-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0346-z

Keywords

Mathematics Subject Classification.

Navigation