Skip to main content

Multiscale Petrov-Galerkin Method for High-Frequency Heterogeneous Helmholtz Equations

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VIII

Abstract

This paper presents a multiscale Petrov-Galerkin finite element method for time-harmonic acoustic scattering problems with heterogeneous coefficients in the high-frequency regime. We show that the method is pollution-free also in the case of heterogeneous media provided that the stability bound of the continuous problem grows at most polynomially with the wave number k. By generalizing classical estimates of Melenk (Ph.D. Thesis, 1995) and Hetmaniuk (Commun. Math. Sci. 5, 2007) for homogeneous medium, we show that this assumption of polynomially wave number growth holds true for a particular class of smooth heterogeneous material coefficients. Further, we present numerical examples to verify our stability estimates and implement an example in the wider class of discontinuous coefficients to show computational applicability beyond our limited class of coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.M. Babuska, S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42 (3), 451–484 (2000)

    MathSciNet  MATH  Google Scholar 

  2. T. Betcke, S.N. Chandler-Wilde, I.G. Graham, S. Langdon, M. Lindner, Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation. Numer. Methods Partial Differ. Equ. 27 (1), 31–69 (2011). MR 2743599 (2012a:65355)

    Google Scholar 

  3. D. Brown, D. Peterseim, A multiscale method for porous microstructures. SIAM MMS 14, 1123–1152 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Cummings, X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (1), 139–160 (2006). MR 2194984 (2007d:35030)

    Google Scholar 

  5. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques and Applications (Berlin), vol. 69 (Springer, Heidelberg, 2012). MR 2882148

    Google Scholar 

  6. S. Esterhazy, J.M. Melenk, On stability of discretizations of the Helmholtz equation, in Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol. 83 (Springer, Heidelberg, 2012), pp. 285–324. MR 3050917

    Google Scholar 

  7. D. Gallistl, D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng. 295, 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  8. P. Grisvard, Contrôlabilité exacte des solutions de l’équation des ondes en présence de singularités. J. Math. Pures Appl. (9) 68 (2), 215–259 (1989). MR 1010769 (90i:49045)

    Google Scholar 

  9. P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11 (4), 1149–1175 (2013). MR 3123820

    Google Scholar 

  10. P. Henning, P. Morgenstern, D. Peterseim, Multiscale Partition of Unity, in Meshfree Methods for Partial Differential Equations VII, ed. by M. Griebel, M.A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 100 (Springer, Berlin, 2014)

    Google Scholar 

  11. U. Hetmaniuk, Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5 (3), 665–678 (2007). MR 2352336 (2008m:35050)

    Google Scholar 

  12. Ch. Makridakis, F. Ihlenburg, I. Babuška, Analysis and finite element methods for a fluid-solid interaction problem in one dimension. Math. Models Methods Appl. Sci. 06 (08), 1119–1141 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (290), 2583–2603 (2014). MR 3246801

    Google Scholar 

  14. J.M. Melenk, On generalized finite-element methods. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.), University of Maryland, College Park. MR 2692949

    Google Scholar 

  15. J.M. Melenk, S.A. Sauter, Wave-number explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp. 86, 1005–1036 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114 (Springer International Publishing, 2016). doi:10.1007/978-3-319-41640-3

    Google Scholar 

  18. H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version. IMA J. Numer. Anal. 34 (3), 1266–1288 (2014). MR 3232452

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support given by the Hausdorff Center for Mathematics Bonn. D. Peterseim is supported by Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the project “Adaptive isogeometric modeling of propagating strong discontinuities in heterogeneous materials”.

We thank Professor S. Sauter for helpful discussions on the stability analysis of Helmholtz problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Brown .

Editor information

Editors and Affiliations

Appendix: Proof of Stability

Appendix: Proof of Stability

1.1 Technical and Auxiliary Lemmas

We will now proceed by recalling and demonstrating a few technical and auxiliary Lemmas used in the proof of Theorem 1. We begin with two critical technical lemmas that remain unchanged from the homogeneous case examined in [11] and are repeated here for completeness.

Lemma 2

Let \(m \in W^{1,\infty }(\Omega )^{d}\) and for all \(q \in H^{1}(\Omega )\) we have

$$\displaystyle\begin{array}{rcl} \int _{\partial \Omega }\vert q\vert ^{2}m \cdot \nu ds =\int _{ \Omega }\mbox{ div}(m)\vert q\vert ^{2}dx + 2\mathop{\mathrm{Re}}\nolimits \int _{ \Omega }qm \cdot \nabla \bar{q}dx.& &{}\end{array}$$
(38)

Proof

See [11], Lemma 3.1. □ 

Lemma 3

Let \(m \in W^{1,\infty }(\Omega )^{d}\) and for all \(q \in H_{\Gamma _{D}}^{1}(\Omega ) \cap H^{3/2+\delta },\delta> 0,\) we have

$$\displaystyle\begin{array}{rcl} & & \int _{\partial \Omega \setminus \Gamma _{D}}\vert \nabla q\vert ^{2}m \cdot \nu ds -\int _{ \Gamma _{D}}\vert \partial _{\nu }q\vert ^{2}m \cdot \nu ds \\ & & =\int _{\Omega }\mbox{ div}(m)\vert \nabla q\vert ^{2}dx - 2\mathop{\mathrm{Re}}\nolimits \int _{ \Omega }\nabla q \cdot (\nabla \bar{q}\nabla )mdx \\ & & -2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\Delta q(m \cdot \nabla \bar{q})dx + 2\mathop{\mathrm{Re}}\nolimits \int _{\partial \Omega \setminus \Gamma _{D}}\partial _{\nu }q(m \cdot \nabla \bar{q})ds{}\end{array}$$
(39)

Proof

See [8]. □ 

Here we will present a few auxiliary Lemmas.

Lemma 4

Let \(\Omega \subset \mathbb{R}^{d}\) be a bounded connected Lipschitz domain. Let \(u \in H^{1}(\Omega )\) be a weak solution of (1) , with \(f \in L^{2}(\Omega )\) and \(g \in L^{2}(\Gamma _{R})\) . Then, we have for any ε > 0

$$\displaystyle\begin{array}{rcl} k^{2}\left \Vert u\right \Vert _{ L^{2}(\Gamma _{R})}^{2} \leq \frac{1} {\beta _{min}}\left (\frac{1} {\epsilon } \left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + k^{2}\epsilon \left \Vert u\right \Vert _{ L^{2}(\Omega )}^{2} + \frac{1} {\beta _{min}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ).& &{}\end{array}$$
(40)

Proof

Taking v = u into the variational form (5) and looking at the imaginary part we have

$$\displaystyle\begin{array}{rcl} \mathfrak{I}(a(u,u)) = -(k\beta (x)u,u) = \mathfrak{I}((g,u)_{L^{2}(\Gamma _{R})} + (\,f,u)_{L^{2}(\Omega )}),& & {}\\ \end{array}$$

and so

$$\displaystyle\begin{array}{rcl} & & k\beta _{min}\left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}^{2} {}\\ & & \quad \leq \left \Vert u\right \Vert _{L^{2}(\Omega )}\left \Vert f\right \Vert _{L^{2}(\Omega )} + \left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})} {}\\ & & \quad \leq \frac{1} {2k\xi _{1}}\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{k\xi _{1}} {2} \left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} + \frac{1} {2\xi _{2}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} + \frac{\xi _{2}} {2}\left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}^{2}. {}\\ \end{array}$$

Multiplying by k, dividing by β min , and setting ξ 2 = β min k we obtain

$$\displaystyle\begin{array}{rcl} k^{2}\left \Vert u\right \Vert _{ L^{2}(\Gamma _{R})}^{2} \leq \frac{1} {\beta _{min}}\bigg( \frac{1} {2\xi _{1}}\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2}& +& \frac{k^{2}\xi _{ 1}} {2} \left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & +& \frac{1} {2\beta _{min}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} + \frac{k^{2}\beta _{ min}} {2} \left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}^{2}\bigg), {}\\ \end{array}$$

and we obtain

$$\displaystyle\begin{array}{rcl} \frac{k^{2}} {2} \left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}^{2}& \leq & \frac{1} {\beta _{min}}\left ( \frac{1} {2\xi _{1}}\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{k^{2}\xi _{ 1}} {2} \left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} + \frac{1} {2\beta _{min}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ). {}\\ \end{array}$$

Taking ξ 1 = ε > 0 we arrive at the estimate. □ 

We will also need the estimate below.

Lemma 5

Let \(\Omega \subset \mathbb{R}^{d}\) be a bounded connected Lipschitz domain. Let \(u \in H^{1}(\Omega )\) be a weak solution of (1) with \(f \in L^{2}(\Omega )\) and \(g \in L^{2}(\Gamma _{R})\) . Then, we have

$$\displaystyle{ \begin{array}{ll} &\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \quad \leq \frac{1} {A_{min}}\bigg[k^{2}\left (V _{max}^{2} + \frac{\xi _{4}} {\beta _{min}} + \frac{\xi _{3}} {2}\right )\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \qquad \qquad + \left ( \frac{1} {2k^{2}\xi _{3}} + \frac{1} {\beta _{min}\xi _{4}} \right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}} \right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\bigg]. \end{array} }$$
(41)

for any ξ 3 4 > 0.

Proof

Taking v = u into the variational form (5) and looking at the real part we have

$$\displaystyle\begin{array}{rcl} \mathop{\mathrm{Re}}\nolimits (a(u,u))& =& (A(x)\nabla u,\nabla u)_{L^{2}(\Omega )} - (k^{2}V ^{2}(x)u,u)_{ L^{2}(\Omega )} {}\\ & =& \mathop{\mathrm{Re}}\nolimits ((g,u)_{L^{2}(\Gamma _{R})} + (\,f,u)_{L^{2}(\Omega )}), {}\\ \end{array}$$

and so we have

$$\displaystyle\begin{array}{rcl} \left \Vert A^{\frac{1} {2} }\nabla u\right \Vert _{L^{2}(\Omega )}^{2} \leq k^{2}\left \Vert V u\right \Vert _{L^{2}(\Omega )}^{2} + \left \Vert u\right \Vert _{L^{2}(\Omega )}\left \Vert f\right \Vert _{L^{2}(\Omega )} + \left \Vert u\right \Vert _{L^{2}(\Gamma _{ R})}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}.& & {}\\ \end{array}$$

Using the maximal and minimal values we have for any ξ 3 > 0 that

$$\displaystyle\begin{array}{rcl} A_{min}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2}& \leq & k^{2}\left \Vert V u\right \Vert _{ L^{2}(\Omega )}^{2} + \left \Vert u\right \Vert _{ L^{2}(\Omega )}\left \Vert f\right \Vert _{L^{2}(\Omega )} + \left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})} \\ & \leq & \left (k^{2}V _{ max}^{2} + \frac{k^{2}\xi _{ 3}} {2} \right )\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} + \frac{1} {2k^{2}\xi _{3}}\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} \\ & +& \frac{1} {4k^{2}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} + k^{2}\left \Vert u\right \Vert _{ L^{2}(\Gamma _{R})}^{2}. {}\end{array}$$
(42)

Using estimate (40) we may write for any ε > 0

$$\displaystyle\begin{array}{rcl} k^{2}\left \Vert u\right \Vert _{ L^{2}(\Gamma _{R})}^{2} \leq \frac{1} {\beta _{min}}\left (k^{2}\epsilon \left \Vert u\right \Vert _{ L^{2}(\Omega )}^{2} + \frac{1} {\epsilon } \left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{1} {\beta _{min}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ).& &{}\end{array}$$
(43)

Inserting the above inequality into (42) we obtain

$$\displaystyle\begin{array}{rcl} & & A_{min}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & & \qquad \leq \left (k^{2}V _{ max}^{2} + \frac{k^{2}\xi _{ 3}} {2} \right )\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} + \frac{1} {2k^{2}\xi _{3}}\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{1} {4k^{2}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} {}\\ & & \qquad + \frac{1} {\beta _{min}}\left (k^{2}\epsilon \left \Vert u\right \Vert _{ L^{2}(\Omega )}^{2} + \frac{1} {\epsilon } \left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{1} {\beta _{min}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ). {}\\ \end{array}$$

Taking ε = ξ 4 the above inequality becomes

$$\displaystyle\begin{array}{rcl} A_{min}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2}& \leq & k^{2}\left (V _{ max}^{2} + \frac{\xi _{4}} {\beta _{min}} + \frac{\xi _{3}} {2}\right )\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & +& \left ( \frac{1} {2k^{2}\xi _{3}} + \frac{1} {\beta _{min}\xi _{4}}\right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}}\right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}. {}\\ \end{array}$$

Thus, we obtained our estimate. □ 

1.2 Proof of Main Stability Result

We are now in a position to prove Theorem 1. The key observation is that the Laplacian may be rewritten using (1) and combined with the technical and auxiliary lemmas. This leads to the conditions on the coefficients (12).

Proof (Proof of Theorem 1)

Using (39) where we write

$$\displaystyle{-\Delta u = \frac{1} {A}(\,f + k^{2}V ^{2}u + \nabla A \cdot \nabla u),}$$

ν u = 0 on \(\Gamma _{N}\), and ν u = ik β u + g on \(\Gamma _{R}\), we obtain

$$\displaystyle{ \begin{array}{ll} &\int _{\partial \Omega \setminus \Gamma _{D}}\vert \nabla u\vert ^{2}m \cdot \nu ds -\int _{\Gamma _{D}}\vert \partial _{\nu }u\vert ^{2}m \cdot \nu ds \\ &\qquad =\int _{\Omega }\mbox{ div}(m)\vert \nabla u\vert ^{2}dx - 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\nabla u \cdot (\nabla \bar{u}\nabla )mdx \\ &\qquad \qquad + 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega } \frac{1} {A}(\,f + k^{2}V ^{2}u + \nabla A \cdot \nabla u)(m \cdot \nabla \bar{u})dx \\ &\qquad \qquad + 2\mathop{\mathrm{Re}}\nolimits \int _{\Gamma _{R}}(ik\beta u + g)(m \cdot \nabla \bar{u})ds. \end{array} }$$
(44)

Using (38) with the transform \(m \rightarrow \frac{V ^{2}} {A} m\), we have

$$\displaystyle\begin{array}{rcl} & & k^{2}\int _{ \partial \Omega }\vert u\vert ^{2}\left (\frac{V ^{2}} {A} \right )m \cdot \nu ds {}\\ & & \qquad \qquad = k^{2}\int _{ \Omega }\mbox{ div}\left (\frac{V ^{2}} {A} m\right )\vert u\vert ^{2}dx + 2k^{2}\mathop{ \mathrm{Re}}\nolimits \int _{ \Omega }u\left (\frac{V ^{2}} {A} \right )m \cdot \nabla \bar{u}dx. {}\\ \end{array}$$

Using this to replace the term \(\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\left (\frac{V ^{2}} {A} \right )u(m \cdot \nabla \bar{u})dx\), we have

$$\displaystyle\begin{array}{rcl} & & \int _{\partial \Omega \setminus \Gamma _{D}}\vert \nabla u\vert ^{2}m \cdot \nu ds -\int _{ \Gamma _{D}}\vert \partial _{\nu }u\vert ^{2}m \cdot \nu ds {}\\ & & \quad =\int _{\Omega }\mbox{ div}(m)\vert \nabla u\vert ^{2}dx - 2\mathop{\mathrm{Re}}\nolimits \int _{ \Omega }\nabla u \cdot (\nabla \bar{u}\nabla )mdx {}\\ & & \qquad + 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\left ( \frac{f} {A}\right )(m \cdot \nabla \bar{u})dx + 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\left (\frac{\nabla A} {A} \right ) \cdot \nabla u(m \cdot \nabla \bar{u})dx {}\\ & & \qquad + 2\mathop{\mathrm{Re}}\nolimits \int _{\Gamma _{R}}(ik\beta u + g)(m \cdot \nabla \bar{u})ds {}\\ & & \qquad - k^{2}\int _{ \Omega }\mbox{ div}\left (\frac{V ^{2}} {A} m\right )\vert u\vert ^{2}dx + k^{2}\int _{ \partial \Omega }\vert u\vert ^{2}\left (\frac{V ^{2}} {A} \right )m \cdot \nu ds. {}\\ \end{array}$$

Expanding out the boundary terms in each of the portions we have

$$\displaystyle{ \begin{array}{ll} & -\int _{\Gamma _{D}}\vert \partial _{\nu }u\vert ^{2}m \cdot \nu ds +\int _{\Gamma _{N}}\vert \nabla u\vert ^{2}m \cdot \nu ds \\ &\qquad +\int _{\Gamma _{R}}\vert \nabla u\vert ^{2}m \cdot \nu ds + k^{2}\int _{\Omega }\mbox{ div}\left (\frac{V ^{2}} {A} m\right )\vert u\vert ^{2}dx \\ & =\int _{\Omega }\mbox{ div}(m)\vert \nabla u\vert ^{2}dx - 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\nabla u \cdot (\nabla \bar{u}\nabla )mdx \\ &\qquad + 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\left ( \frac{f} {A}\right )(m \cdot \nabla \bar{u})dx + 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\left (\frac{\nabla A} {A} \right ) \cdot \nabla u(m \cdot \nabla \bar{u})dx \\ &\qquad + k^{2}\int _{\Gamma _{N}}\vert u\vert ^{2}\left (\frac{V ^{2}} {A} \right )m \cdot \nu ds + k^{2}\int _{ \Gamma _{R}}\vert u\vert ^{2}\left (\frac{V ^{2}} {A} \right )m \cdot \nu ds \\ &\qquad + 2\mathop{\mathrm{Re}}\nolimits \int _{\Gamma _{R}}(ik\beta u + g)(m \cdot \nabla \bar{u})ds.\end{array} }$$
(45)

Now we suppose we make the geometric assumptions made by Hetmaniuk [11] outlined in (9). Recall, we have for m = xx 0, thus we compute

$$\displaystyle\begin{array}{rcl} \mbox{ div}(x - x_{0})& =& d\mbox{ in }\Omega, {}\\ \nabla u \cdot (\nabla \bar{u}\nabla )(x - x_{0})& =& \vert \nabla u\vert ^{2}\mbox{ in }\Omega, {}\\ (x - x_{0})\cdot \nu & \leq & 0\mbox{ on }\Gamma _{D}, {}\\ (x - x_{0})\cdot \nu & =& 0\mbox{ on }\Gamma _{N}, {}\\ (x - x_{0})\cdot \nu & \geq & \eta \mbox{ on }\Gamma _{R}. {}\\ \end{array}$$

Using the above relations in (45) we obtain

$$\displaystyle{ \begin{array}{ll} &\eta \int _{\Gamma _{R}}\vert \nabla u\vert ^{2}ds + k^{2}\int _{\Omega }\mbox{ div}\left (\frac{V ^{2}} {A} (x - x_{0})\right )\vert u\vert ^{2}dx \\ & \leq (d - 2)\int _{\Omega }\vert \nabla u\vert ^{2}dx + 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\left ( \frac{f} {A}\right )((x - x_{0}) \cdot \nabla \bar{u})dx \\ & + 2\mathop{\mathrm{Re}}\nolimits \int _{\Omega }\left (\frac{\nabla A} {A} \right )\nabla u((x - x_{0}) \cdot \nabla \bar{u})dx \\ & + k^{2}\int _{\Gamma _{R}}\vert u\vert ^{2}\left (\frac{V ^{2}} {A} \right )(x - x_{0}) \cdot \nu ds + 2\mathop{\mathrm{Re}}\nolimits \int _{\Gamma _{R}}(ik\beta u + g)(m \cdot \nabla \bar{u})ds.\end{array} }$$
(46)

Recall, (10), where we define the following function

$$\displaystyle{ \begin{array}{ll} S(x)&:= \mbox{ div}\left (\left (\frac{V ^{2}(x)} {A(x)} \right )(x - x_{0})\right ) \\ & = d\left (\frac{V ^{2}(x)} {A(x)} \right ) + \left (2\frac{V (x)\nabla V (x)} {A(x)} -\frac{V ^{2}(x)\nabla A(x)} {A^{2}(x)} \right ) \cdot (x - x_{0}),\end{array} }$$
(47)

and from (12), we have a minimum for S(x) exists and is positive

$$\displaystyle{S_{min} =\min _{x\in \Omega }S(x)> 0.}$$

Further, from (12), we have C G to be the minimal constant so that

$$\displaystyle\begin{array}{rcl} 2\left \vert \int _{\Omega }\left (\frac{\nabla A} {A} \right )\nabla u((x - x_{0}) \cdot \nabla \bar{u})dx\right \vert \leq C_{G}\left \Vert \left (\frac{\nabla A} {A} \right )\right \Vert _{L^{\infty }(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2}.& &{}\end{array}$$
(48)

Returning to inequality (46), we obtain

$$\displaystyle{ \begin{array}{ll} &\eta \left \Vert \nabla u\right \Vert _{L^{2}(\Gamma _{R})}^{2} + k^{2}S_{min}\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \leq (d - 2)\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} + C_{G}\left \Vert \left (\frac{\nabla A} {A} \right )\right \Vert _{L^{\infty }(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \quad + C_{1}\left ( \frac{1} {A_{min}}\left \Vert f\right \Vert _{L^{2}(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )} + \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}\left \Vert \nabla u\right \Vert _{L^{2}(\Gamma _{R})}\right ) \\ &\quad + C_{1}\left (k^{2}\left (\frac{V _{max}^{2}} {A_{min}} \right )\left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}^{2} + k\left \Vert \beta \right \Vert _{L^{\infty }(\Gamma _{R})}\left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}\left \Vert \nabla u\right \Vert _{L^{2}(\Gamma _{R})}\right ),\end{array} }$$
(49)

where C 1 is independent of k and the bounds (3). Note that on the right hand side we have for any ξ 5, ξ 6 > 0 the terms

$$\displaystyle\begin{array}{rcl} k\left \Vert \beta \right \Vert _{L^{\infty }(\Gamma _{R})}\left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}\left \Vert \nabla u\right \Vert _{L^{2}(\Gamma _{R})}& \leq & \frac{k^{2}} {2\xi _{5}} \left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}^{2} + \frac{\xi _{5}} {2}\left \Vert \beta \right \Vert _{L^{\infty }(\Gamma _{R})}^{2}\left \Vert \nabla u\right \Vert _{ L^{2}(\Gamma _{R})}^{2} {}\\ \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}\left \Vert \nabla u\right \Vert _{L^{2}(\Gamma _{R})}& \leq & \frac{1} {2\xi _{6}}\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} + \frac{\xi _{6}} {2}\left \Vert \nabla u\right \Vert _{L^{2}(\Gamma _{R})}^{2}. {}\\ \end{array}$$

We choose ξ 5, ξ 6 so that

$$\displaystyle{ \frac{\eta } {2} = C_{1} \frac{\xi _{5}} {2}\left \Vert \beta \right \Vert _{L^{\infty }(\Gamma _{R})}^{2} = C_{ 1} \frac{\xi _{6}} {2},}$$

and so

$$\displaystyle{\frac{k^{2}} {2\xi _{5}} \leq \frac{C_{1}} {2\eta } \left \Vert \beta \right \Vert _{L^{\infty }(\Gamma _{R})}^{2}k^{2}.}$$

We then obtain

$$\displaystyle{ \begin{array}{ll} k^{2}S_{min}\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} & \leq C_{1}\left (\left (\frac{C_{1}} {2\eta } \left \Vert \beta \right \Vert _{L^{\infty }(\Gamma _{R})}^{2} + \frac{V _{max}^{2}} {A_{min}} \right )k^{2}\left \Vert u\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ) \\ & + C_{1}\left ( \frac{1} {A_{min}}\left \Vert f\right \Vert _{L^{2}(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )} + \frac{C_{1}} {2\eta } \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ) \\ & + (d - 2)\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} + C_{G}\left \Vert \left (\frac{\nabla A} {A} \right )\right \Vert _{L^{\infty }(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2}. \end{array} }$$
(50)

Taking \(C_{2}^{bd} = C_{1}\left (\frac{C_{1}} {2\eta } \left \Vert \beta \right \Vert _{L^{\infty }(\Gamma _{R})}^{2} + \frac{V _{max}^{2}} {A_{min}} \right )\) and letting ε = β min ξ 7C 2 bd in the inequality (40) we have the relation

$$\displaystyle\begin{array}{rcl} C_{2}^{bd}k^{2}\left \Vert u\right \Vert _{ L^{2}(\Gamma _{R})}^{2} \leq \frac{(C_{2}^{bd})^{2}} {\beta _{min}^{2}\xi _{7}} \left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + k^{2}\xi _{ 7}\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} + \frac{C_{2}^{bd}} {\beta _{min}^{2}} \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}.& &{}\end{array}$$
(51)

Applying this above inequality to (50), we obtain

$$\displaystyle{ \begin{array}{ll} &k^{2}(S_{min} -\xi _{7})\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \qquad \leq C_{1}\left ( \frac{1} {A_{min}}\left \Vert f\right \Vert _{L^{2}(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )} + \frac{C_{1}} {2\eta } \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ) \\ &\qquad \qquad + \left ((d - 2) + C_{G}\left \Vert \left (\frac{\nabla A} {A} \right )\right \Vert _{L^{\infty }(\Omega )}\right )\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \qquad \qquad + \frac{(C_{2}^{bd})^{2}} {\beta _{min}^{2}\xi _{7}} \left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{C_{2}^{bd}} {\beta _{min}^{2}} \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}.\end{array} }$$
(52)

Recall the estimate (41), with \(C_{3}^{bd} = \left ((d - 2) + C_{G}\left \Vert \left (\frac{\nabla A} {A} \right )\right \Vert _{L^{\infty }(\Omega )}\right )\), and taking \(\xi _{4} = \frac{\xi _{3}} {2} =\xi _{8}\)

$$\displaystyle\begin{array}{rcl} & & C_{3}^{bd}\left \Vert \nabla u\right \Vert _{ L^{2}(\Omega )}^{2} {}\\ & & \ \leq \frac{C_{3}^{bd}k^{2}} {A_{min}} \left (V _{max}^{2} + \frac{\xi _{8}} {\beta _{min}} +\xi _{8}\right )\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & & \quad + \frac{C_{3}^{bd}} {A_{min}}\left ( \frac{1} {4k^{2}\xi _{8}} + \frac{1} {\beta _{min}\xi _{8}}\right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{C_{3}^{bd}} {A_{min}}\left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}}\right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}. {}\\ \end{array}$$

and so, using the above estimate (52)we obtain

$$\displaystyle{ \begin{array}{ll} &k^{2}(S_{min} -\xi _{7} - \frac{C_{3}^{bd}} {A_{min}}\left (V _{max}^{2} + \frac{\xi _{8}} {\beta _{min}} +\xi _{8}\right ))\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \leq C_{1}\left ( \frac{1} {A_{min}}\left \Vert f\right \Vert _{L^{2}(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )} + \frac{C_{1}} {2\eta } \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\right ) \\ & + \frac{C_{3}^{bd}} {A_{min}}\left ( \frac{1} {4k^{2}\xi _{8}} + \frac{1} {\beta _{min}\xi _{8}} \right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{C_{3}^{bd}} {A_{min}}\left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}} \right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} \\ & + \frac{(C_{2}^{bd})^{2}} {\beta _{min}^{2}\xi _{7}} \left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{C_{2}^{bd}} {\beta _{min}^{2}} \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}.\end{array} }$$
(53)

Finally to deal with the remaining term on the right hand side that contains ∇u, we note using (41), letting \(\frac{\xi _{4}} {\beta _{min}} = \frac{\xi _{3}} {2} = \frac{V _{max}^{2}} {2}\), and multiplying by ξ 9∕(2A min ), ξ 9 > 0, we obtain

$$\displaystyle\begin{array}{rcl} & & \frac{\xi _{9}} {2A_{min}}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & & \qquad \leq \frac{\xi _{9}} {2A_{min}^{2}}\bigg[2V _{max}^{2}k^{2}\left \Vert u\right \Vert _{ L^{2}(\Omega )}^{2} + \left ( \frac{2} {\beta _{min}^{2}V _{max}^{2}} + \frac{1} {2k^{2}V _{max}^{2}}\right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & & \qquad \qquad \qquad \qquad + \left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}}\right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}\bigg], {}\\ \end{array}$$

and so

$$\displaystyle\begin{array}{rcl} & & \frac{1} {A_{min}}\left \Vert f\right \Vert _{L^{2}(\Omega )}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )} {}\\ & & \qquad \leq \frac{1} {2\xi _{9}A_{min}}\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{\xi _{9}} {2A_{min}}\left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & & \qquad \leq \frac{\xi _{9}V _{max}^{2}} {A_{min}^{2}} k^{2}\left \Vert u\right \Vert _{ L^{2}(\Omega )}^{2} {}\\ & & \qquad \qquad + \left ( \frac{1} {2A_{min}\xi _{9}} + \frac{\xi _{9}} {2A_{min}^{2}}\left ( \frac{2} {\beta _{min}^{2}V _{max}^{2}} + \frac{1} {2k^{2}V _{max}^{2}}\right )\right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} {}\\ & & \qquad \qquad + \frac{\xi _{9}} {2A_{min}^{2}}\left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}}\right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}. {}\\ \end{array}$$

Applying this into (53), we obtain

$$\displaystyle{ \begin{array}{ll} &k^{2}(S_{min} -\xi _{7} - \frac{C_{3}^{bd}} {A_{min}}\left (V _{max}^{2} + \frac{\xi _{8}} {\beta _{min}} +\xi _{8}\right ) -\frac{C_{1}\xi _{9}V _{max}^{2}} {A_{min}^{2}} )\left \Vert u\right \Vert _{L^{2}(\Omega )}^{2} \\ & \leq C_{1}\left ( \frac{1} {2A_{min}\xi _{9}} + \frac{\xi _{9}} {2A_{min}^{2}} \left ( \frac{2} {\beta _{min}^{2}V _{max}^{2}} + \frac{1} {2k^{2}V _{max}^{2}} \right )\right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} \\ & + C_{1}\left (\frac{C_{1}} {2\eta } + \frac{\xi _{9}} {2A_{min}^{2}} \left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}} \right )\right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} \\ & + \frac{C_{3}^{bd}} {A_{min}}\left ( \frac{1} {4k^{2}\xi _{8}} + \frac{1} {\beta _{min}\xi _{8}} \right )\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} \\ & + \frac{C_{3}^{bd}} {A_{min}}\left ( \frac{1} {\beta _{min}^{2}} + \frac{1} {4k^{2}} \right )\left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2} + \frac{(C_{2}^{bd})^{2}} {\beta _{min}^{2}\xi _{7}} \left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \frac{C_{2}^{bd}} {\beta _{min}^{2}} \left \Vert g\right \Vert _{L^{2}(\Gamma _{R})}^{2}. \end{array} }$$
(54)

Hence, we see that the critical term is \(S_{min} -\frac{C_{3}^{bd}V _{ max}^{2}} {A_{min}}.\) Recall,

$$\displaystyle{C_{3}^{bd}:= \left ((d - 2) + C_{ G}\left \Vert \left (\frac{\nabla A} {A} \right )\right \Vert _{L^{\infty }(\Omega )}\right ),}$$

thus, from (12), we have

$$\displaystyle\begin{array}{rcl} S_{min} -\left ((d - 2) + C_{G}\left \Vert \left (\frac{\nabla A} {A} \right )\right \Vert _{L^{\infty }(\Omega )}\right )\frac{V _{max}^{2}} {A_{min}}> 0.& &{}\end{array}$$
(55)

Since (55) is assumed to hold, we take ξ 7, ξ 8, and ξ 9, so that

$$\displaystyle{\left (S_{min} -\frac{C_{3}^{bd}V _{max}^{2}} {A_{min}} -\xi _{7} -\frac{C_{3}^{bd}\xi _{8}} {A_{min}} \left ( \frac{1} {\beta _{min}} + 1\right ) -\frac{C_{1}\xi _{9}V _{max}^{2}} {A_{min}^{2}} \right )>\delta }$$

for some δ > 0, and taking C 4 bd to be the global constant bound for (54) we obtain

$$\displaystyle\begin{array}{rcl} k^{2}\left \Vert u\right \Vert _{ L^{2}(\Omega )}^{2} \leq \frac{C_{4}^{bd}} {\delta } \left (1 + \frac{1} {k^{2}}\right )\left (\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \left \Vert g\right \Vert _{ L^{2}(\Gamma _{R})}^{2}\right ),& &{}\end{array}$$
(56)

and using (41), and taking C 5 bd to be the global constant bound we obtain

$$\displaystyle\begin{array}{rcl} \left \Vert \nabla u\right \Vert _{L^{2}(\Omega )}^{2} \leq C_{ 5}^{bd}\left (1 + \frac{1} {k^{2}}\right )\left (\left \Vert f\right \Vert _{L^{2}(\Omega )}^{2} + \left \Vert g\right \Vert _{ L^{2}(\Gamma _{R})}^{2}\right ),& &{}\end{array}$$
(57)

as desired. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Brown, D.L., Gallistl, D., Peterseim, D. (2017). Multiscale Petrov-Galerkin Method for High-Frequency Heterogeneous Helmholtz Equations. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VIII . Lecture Notes in Computational Science and Engineering, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-319-51954-8_6

Download citation

Publish with us

Policies and ethics