Skip to main content
Log in

Evaluating the causal association between microRNAs and amyotrophic lateral sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Currently, miRNAs are involved in the development of amyotrophic lateral sclerosis (ALS), and identifying circulating miRNAs that are causally associated with ALS risk as biomarkers is imperative.

Methods

We performed a two-sample Mendelian randomization study to evaluate the causal relationship between miRNAs and ALS. Our analysis was conducted using summary statistics from miRNA expression quantitative loci (eQTL) data of the Framingham Heart Study and ALS genome-wide association studies data. Another independent miRNA data was used to further validate.

Results

We identified eight unique miRNAs that were causally associated with ALS risk. Using expression data of miRNAs from an independent study, we validated three high-confidence miRNAs, namely hsa-miR-27b-3p, hsa-miR-139-5p, and hsa-miR-152-3p, which might have a potential causal effect on ALS risk.

Conclusion

We suggested that higher levels of hsa-miR-27b-3p and hsa-miR-139-5p had protective effects on ALS, whereas higher levels of hsa-miR-152-3p might act as a risk factor for ALS. The analytical framework presented in this study helps to understand the role of miRNAs in the development of ALS and to identify the biomarkers for ALS risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to perform the analyses in this study were obtained from public genome-wide association studies summary statistics. Validation data were obtained from the study [26] through a request to the authors.

References

  1. Bucchia M, Ramirez A, Parente V, Simone C, Nizzardo M, Magri F, Dametti S, Corti S (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin Ther 37(3):668–680. https://doi.org/10.1016/j.clinthera.2014.12.020

    Article  PubMed  Google Scholar 

  2. Cloutier F, Marrero A, O'Connell C, Morin P Jr (2015) MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J Mol Neurosci 56(1):102–112. https://doi.org/10.1007/s12031-014-0471-8

    Article  CAS  PubMed  Google Scholar 

  3. Ajroud-Driss S, Siddique T (2015, 1852) Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim Biophys Acta (4):679–684. https://doi.org/10.1016/j.bbadis.2014.08.010

  4. Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, Hedlund E (2014) Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 71(6):999–1015. https://doi.org/10.1007/s00018-013-1480-4

    Article  CAS  PubMed  Google Scholar 

  5. Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130. https://doi.org/10.1159/000351153

    Article  PubMed  Google Scholar 

  6. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7(11):603–615. https://doi.org/10.1038/nrneurol.2011.150

    Article  CAS  PubMed  Google Scholar 

  7. Bigio EH, Weintraub S, Rademakers R, Baker M, Ahmadian SS, Rademaker A, Weitner BB, Mao Q, Lee KH, Mishra M, Ganti RA, Mesulam MM (2013) Frontotemporal lobar degeneration with TDP-43 proteinopathy and chromosome 9p repeat expansion in C9ORF72: clinicopathologic correlation. Neuropathology 33(2):122–133. https://doi.org/10.1111/j.1440-1789.2012.01332.x

    Article  CAS  PubMed  Google Scholar 

  8. Kawahara Y, Mieda-Sato A (2012) TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci USA 109(9):3347–3352. https://doi.org/10.1073/pnas.1112427109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19(R1):R46–R64. https://doi.org/10.1093/hmg/ddq137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ason B, Darnell DK, Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, Antin PB, Plasterk RH (2006) Differences in vertebrate microRNA expression. Proc Natl Acad Sci USA 103(39):14385–14389. https://doi.org/10.1073/pnas.0603529103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  12. Cullen BR (2006) Viruses and microRNAs. Nat Gen 38:S25–S30. https://doi.org/10.1038/ng1793

    Article  CAS  Google Scholar 

  13. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414. https://doi.org/10.1016/j.cell.2007.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Gen 38:S31–S36. https://doi.org/10.1038/ng1791

    Article  CAS  Google Scholar 

  15. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14(8):535–548. https://doi.org/10.1038/nrg3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan JY, Marques AC (2014) The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. Adv Genet 85:149–199. https://doi.org/10.1016/b978-0-12-800271-1.00003-2

    Article  CAS  PubMed  Google Scholar 

  17. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628. https://doi.org/10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  18. Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):639–649. https://doi.org/10.1038/nrneurol.2011.153

    Article  CAS  PubMed  Google Scholar 

  19. Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14(4):248–264. https://doi.org/10.1038/nrn3430

    Article  CAS  PubMed  Google Scholar 

  20. Johnson R, Noble W, Tartaglia GG, Buckley NJ (2012) Neurodegeneration as an RNA disorder. Prog Neurobiol 99(3):293–315. https://doi.org/10.1016/j.pneurobio.2012.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules (Basel, Switzerland) 19(5):6891–6910. https://doi.org/10.3390/molecules19056891

    Article  CAS  PubMed  Google Scholar 

  23. Schneider R, McKeever P, Kim T, Graff C, van Swieten JC, Karydas A, Boxer A, Rosen H, Miller BL, Laforce R Jr, Galimberti D, Masellis M, Borroni B, Zhang Z, Zinman L, Rohrer JD, Tartaglia MC, Robertson J (2018) Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study. J Neurol Neurosurg Psychiatry 89(8):851–858. https://doi.org/10.1136/jnnp-2017-317492

    Article  PubMed  Google Scholar 

  24. Freischmidt A, Müller K, Zondler L, Weydt P, Volk AE, Božič AL, Walter M, Bonin M, Mayer B, von Arnim CA, Otto M, Dieterich C, Holzmann K, Andersen PM, Ludolph AC, Danzer KM, Weishaupt JH (2014) Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain 137(11):2938–2950. https://doi.org/10.1093/brain/awu249

    Article  PubMed  Google Scholar 

  25. Huan T, Rong J, Liu C, Zhang X, Tanriverdi K, Joehanes R, Chen BH, Murabito JM, Yao C, Courchesne P, Munson PJ, O'Donnell CJ, Cox N, Johnson AD, Larson MG, Levy D, Freedman JE (2015) Genome-wide identification of microRNA expression quantitative trait loci. Nat Commun 6:6601. https://doi.org/10.1038/ncomms7601

    Article  CAS  PubMed  Google Scholar 

  26. Nikpay M, Beehler K, Valsesia A, Hager J, Harper ME, Dent R, McPherson R (2019) Genome-wide identification of circulating-miRNA expression quantitative trait loci reveals the role of several miRNAs in the regulation of cardiometabolic phenotypes. Cardiovasc Res 115(11):1629–1645. https://doi.org/10.1093/cvr/cvz030

    Article  CAS  PubMed  Google Scholar 

  27. Nicolas A, Kenna KP, Renton AE, Ticozzi N, Faghri F, Chia R, Dominov JA, Kenna BJ, Nalls MA, Keagle P, Rivera AM, van Rheenen W, Murphy NA, van Vugt J, Geiger JT, Van der Spek RA, Pliner HA, Shankaracharya SBN, Marangi G et al (2018) Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97(6):1268–1283.e1266. https://doi.org/10.1016/j.neuron.2018.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL, van der Spek RA, Võsa U, de Jong S, Robinson MR, Yang J, Fogh I, van Doormaal PT, Tazelaar GH, Koppers M, Blokhuis AM, Sproviero W, Jones AR, Kenna KP et al (2016) Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet 48(9):1043–1048. https://doi.org/10.1038/ng.3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J Neurol Sci 124:96–107. https://doi.org/10.1016/0022-510x(94)90191-0

    Article  PubMed  Google Scholar 

  30. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299. https://doi.org/10.1080/146608200300079536

    Article  CAS  PubMed  Google Scholar 

  31. Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ (Clinical research ed) 362:k601. https://doi.org/10.1136/bmj.k601

    Article  PubMed  Google Scholar 

  32. Walker VM, Davey Smith G, Davies NM, Martin RM (2017) Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol 46(6):2078–2089. https://doi.org/10.1093/ije/dyx207

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chang L, Zhou G, Soufan O, Xia J (2020) miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 48(W1):W244–w251. https://doi.org/10.1093/nar/gkaa467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y, Xu JT, Li YM, Cai XX, Zhou ZY, Chen XH, Pei YY, Hu L, Su JJ, Cui SD et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 48(D1):D148–d154. https://doi.org/10.1093/nar/gkz896

    Article  CAS  PubMed  Google Scholar 

  35. Re DB, Le Verche V, Yu C, Amoroso MW, Politi KA, Phani S, Ikiz B, Hoffmann L, Koolen M, Nagata T, Papadimitriou D, Nagy P, Mitsumoto H, Kariya S, Wichterle H, Henderson CE, Przedborski S (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81(5):1001–1008. https://doi.org/10.1016/j.neuron.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, Geng J, Amin P, DeWitt JP, Mookhtiar AK, Florez M, Ouchida AT, Fan JB, Pasparakis M, Kelliher MA et al (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science (New York, NY) 353(6299):603–608. https://doi.org/10.1126/science.aaf6803

    Article  CAS  Google Scholar 

  37. Morrice JR, Gregory-Evans CY, Shaw CA (2017) Necroptosis in amyotrophic lateral sclerosis and other neurological disorders. Biochim Biophys Acta Mol Basis Dis 1863(2):347–353. https://doi.org/10.1016/j.bbadis.2016.11.025

    Article  CAS  PubMed  Google Scholar 

  38. Liguori M, Nuzziello N, Introna A, Consiglio A, Licciulli F, D'Errico E, Scarafino A, Distaso E, Simone IL (2018) Dysregulation of MicroRNAs and target genes networks in peripheral blood of patients with sporadic amyotrophic lateral sclerosis. Front Mol Neurosci 11:288. https://doi.org/10.3389/fnmol.2018.00288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ (2013) Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 6:26. https://doi.org/10.1186/1756-6606-6-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hawley ZCE, Campos-Melo D, Strong MJ (2020) Evidence of a negative feedback network between TDP-43 and miRNAs dependent on TDP-43 nuclear localization. J Mol Biol 432(24):166695. https://doi.org/10.1016/j.jmb.2020.10.029

    Article  CAS  PubMed  Google Scholar 

  41. Raheja R, Regev K, Healy BC, Mazzola MA, Beynon V, Von Glehn F, Paul A, Diaz-Cruz C, Gholipour T, Glanz BI, Kivisakk P, Chitnis T, Weiner HL, Berry JD, Gandhi R (2018) Correlating serum microRNAs and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve 58(2):261–269. https://doi.org/10.1002/mus.26106

    Article  CAS  Google Scholar 

  42. Kurita H, Yabe S, Ueda T, Inden M, Kakita A, Hozumi I (2020) MicroRNA-5572 is a novel microRNA-regulating SLC30A3 in sporadic amyotrophic lateral sclerosis. Int J Mol Sci 21(12):4482. https://doi.org/10.3390/ijms21124482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhai K, Liu B, Gao L (2020) Long-noncoding RNA TUG1 promotes Parkinson’s disease via modulating MiR-152-3p/PTEN pathway. Hum Gene Ther 31(23-24):1274–1287. https://doi.org/10.1089/hum.2020.106

    Article  CAS  PubMed  Google Scholar 

  44. Zhang A, Qian Y, Qian J (2019) MicroRNA-152-3p protects neurons from oxygen-glucose-deprivation/reoxygenation-induced injury through upregulation of Nrf2/ARE antioxidant signaling by targeting PSD-93. Biochem Biophys Res Commun 517(1):69–76. https://doi.org/10.1016/j.bbrc.2019.07.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the GWAS consortiums for making the summary data publicly available, and we are grateful to all the investigators and participants who contributed to those studies. We thank Majid Nikpay for providing the miRNA eQTL data used in this study for validation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xusheng Huang; methodology: Yahui Zhu, Mao Li, Zhengqing He, Xinyuan Pang, Rongrong Du; formal analysis and investigation: Yahui Zhu, Mao Li, Zhengqing He, Xinyuan Pang, Rongrong Du, Wenxiu Yu, Jinghong Zhang, Jiongming Bai, Jiao Wang; writing – original draft preparation: Yahui Zhu; writing – review and editing: Xusheng Huang; resources: Yahui Zhu; supervision: Xusheng Huang. All authors approved the version to be published.

Corresponding author

Correspondence to Xusheng Huang.

Ethics declarations

Ethical approval

Ethical review and approval were waived for this study due to this study used summary data from GWAS and did not involve individual data. All studies that contributed data to this analysis were approved by the relevant institutional review board. 

Informed consent

Patient informed consent was waived due to this study used summary data from GWAS and did not involve individual data.

Consent for publication

Patient consent was waived due to this study used summary data from GWAS and did not involve individual data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, M., He, Z. et al. Evaluating the causal association between microRNAs and amyotrophic lateral sclerosis. Neurol Sci 44, 3567–3575 (2023). https://doi.org/10.1007/s10072-023-06860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06860-3

Keywords

Navigation