Skip to main content
Log in

Comparison of immersive and non-immersive virtual reality for upper extremity functional recovery in patients with stroke: a systematic review and network meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

This systematic review aimed to compare the effects of immersive and non-immersive virtual reality on upper extremity function in stroke survivors by employing a network meta-analysis approach.

Data sources

MEDLINE, Embase, CINAHL Plus, APA PsycINFO, and Scopus were searched. Virtual reality was used for upper extremity rehabilitation; dose-matched conventional rehabilitation was used for comparison. Fugl-Meyer Assessment was used to assess upper extremity function. Searches were limited to English language randomized controlled trials.

Methods

Two independent reviewers conducted study selection, data extraction, and quality assessment. Methodological quality was assessed using the Physiotherapy Evidence Database scale. A random-effects frequentist network meta-analysis was conducted by assuming a common random-effects standard deviation for all comparisons in the network.

Results

Twenty randomized controlled trials with 813 participants were included, with each study evaluated as good quality. Immersive virtual reality systems were most effective at improving upper extremity function, followed by non-immersive virtual reality systems, then non-immersive gaming consoles of Microsoft Kinect and Nintendo Wii. Conventional rehabilitation was least effective. Immersive virtual reality was estimated to induce 1.39 (95% confidence interval (CI): 0.25, 2.53) and 1.38 (95% CI: 0.55, 2.20) standard mean differences of improvements in upper extremity function, compared to Nintendo Wii intervention and conventional rehabilitation, respectively.

Conclusion

This systematic review and network meta-analysis highlights the superior effects of immersive virtual reality to non-immersive virtual reality systems and gaming consoles on upper extremity motor recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. “Cochrane Highly Sensitive Search Strategy for identifying randomized trials in MEDLINE: sensitivity-maximizing version (2008 revision); Ovid format” from Lefebvre C, Glanville J, Briscoe S, Featherstone R, Littlewood A, Marshall C, Metzendorf M-I, Noel-Storr A, Paynter R, Rader T, Thomas J, Wieland LS. Technical Supplement to Chapter 4: Searching for and selecting studies. In: Higgins JPT, Thomas J, Chandler J, Cumpston MS, Li T, Page MJ, Welch VA (eds). Cochrane handbook for systematic reviews of interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from: www.training.cochrane.org/handbook.

  2. Cochrane Highly Sensitive Search Strategy for identifying controlled trials in Embase: (2020 revision); Embase.com format from Lefebvre C, Glanville J, Briscoe S, Featherstone R, Littlewood A, Marshall C, Metzendorf M-I, Noel-Storr A, Paynter R, Rader T, Thomas J, Wieland LS. Technical Supplement to Chapter 4: Searching for and selecting studies. In: Higgins JPT, Thomas J, Chandler J, Cumpston MS, Li T, Page MJ, Welch VA (eds). Cochrane handbook for systematic reviews of interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from: www.training.cochrane.org/handbook.

  3. “Cochrane CINAHL-Plus filter” from Lefebvre C, Glanville J, Briscoe S, Featherstone R, Littlewood A, Marshall C, Metzendorf M-I, Noel-Storr A, Paynter R, Rader T, Thomas J, Wieland LS. Technical Supplement to Chapter 4: Searching for and selecting studies. In: Higgins JPT, Thomas J, Chandler J, Cumpston MS, Li T, Page MJ, Welch VA (eds). Cochrane handbook for systematic reviews of interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from: www.training.cochrane.org/handbook.

  4. Watson RJ, Richardson PH. Identifying randomized controlled trials of cognitive therapy for depression: comparing the efficiency of Embase, Medline and PsycINFO bibliographic databases. Br J Med Psychol. 1999 Dec;72 ( Pt 4):535–42.

  5. Searching Scopus for “Randomised control trials,” NUS library, accessed June 6, 2022 https://libguides.nus.edu.sg/c.php?g=145717&p=2470589.

References

  1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN (2020) Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:e139-596

    Article  PubMed  Google Scholar 

  2. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ (2003) Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 34:2181–2186

    Article  PubMed  Google Scholar 

  3. Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, Bleyenheuft Y (2016) Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 10:442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Massetti T, Da Silva TD, Crocetta TB, Guarnieri R, De Freitas BL, Bianchi Lopes P, Watson S, Tonks J, de Mello Monteiro CB (2018) The clinical utility of virtual reality in neurorehabilitation: a systematic review. J Cent Nerv Syst Dis 10:1179573518813541

    Article  PubMed  PubMed Central  Google Scholar 

  5. Levin MF (2011) Can virtual reality offer enriched environments for rehabilitation? Expert Rev Neurother 11:153–155

    Article  PubMed  Google Scholar 

  6. Hao J, Yao Z, Harp K, Gwon DY, Chen Z, Siu K (2022) Effects of virtual reality in the early-stage stroke rehabilitation: a systematic review and meta-analysis of randomized controlled trials. Physiother Theory Pract. https://doi.org/10.1080/09593985.2022.2094302

  7. Hao J, Xie H, Harp K, Chen Z, Siu K (2022) Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: a systematic review. Arch Phys Med Rehabil 103:523–541

  8. Mekbib DB, Han J, Zhang L, Fang S, Jiang H, Zhu J, Roe AW, Xu D (2020) Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials. Brain Inj 34:456–465

    Article  PubMed  Google Scholar 

  9. Slater M, Wilbur S (1997) A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators Virtual Environ 6:603–616

  10. Rose T, Nam CS, Chen KB (2018) Immersion of virtual reality for rehabilitation—review. Appl Ergon 69:153–161

    Article  PubMed  Google Scholar 

  11. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784

    Article  PubMed  Google Scholar 

  12. Verhagen AP, De Vet HC, De Bie RA, Kessels AG, Boers M, Bouter LM, Knipschild PG (1998) The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 51:1235–1241

    Article  CAS  PubMed  Google Scholar 

  13. Cashin AG, McAuley JH (2019) Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J Physiother 66:59

    Article  PubMed  Google Scholar 

  14. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83:713–721

    Article  PubMed  Google Scholar 

  15. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  16. Rücker G (2012) Network meta-analysis, electrical networks and graph theory. Research Synth Methods 3:312–324

    Article  Google Scholar 

  17. Rücker G, Schwarzer G (2014) Reduce dimension or reduce weights? Comparing two approaches to multi-arm studies in network meta-analysis. Stat Med 33:4353–4369

    Article  PubMed  Google Scholar 

  18. Rücker G, Schwarzer G (2015) Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med Res Methodol 15:1–9

    Article  Google Scholar 

  19. Chaimani A, Salanti G (2012) Using network meta-analysis to evaluate the existence of small-study effects in a network of interventions. Res Synth Methods 3:161–176

    Article  PubMed  Google Scholar 

  20. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G (2013) Graphical tools for network meta-analysis in STATA. PLoS ONE 8:e76654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Viechtbauer W, Viechtbauer MW (2015) Package ‘metafor’. The Comprehensive R Archive Network. http://cran.r-project.org/web/packages/metafor/metafor.pdf. Accessed 10 Feb 2023

  22. Rücker G, Schwarzer G, Krahn U, König J, Schwarzer MG (2015) Package ‘netmeta’. Network meta-analysis using frequentist methods. http://cran.r-project.org/web/packages/metafor/metafor.pdf. Accessed 10 Feb 2023

  23. Henrique PP, Colussi EL, De Marchi AC (2019) Effects of exergame on patients’ balance and upper limb motor function after stroke: a randomized controlled trial. J Stroke Cerebrovasc Dis 28:2351–2357

    Article  PubMed  Google Scholar 

  24. Hsu H, Kuo L, Lin Y, Su F, Yang T, Lin C (2022) Effects of a virtual reality–based mirror therapy program on improving sensorimotor function of hands in chronic stroke patients: a randomized controlled trial. Neurorehabil Neural Repair 36:335–345

  25. Huang C, Chiang W, Yeh Y, Fan S, Yang W, Kuo H, Li P (2022) Effects of virtual reality-based motor control training on inflammation, oxidative stress, neuroplasticity and upper limb motor function in patients with chronic stroke: a randomized controlled trial. BMC Neurol 22:1–14

    Article  CAS  Google Scholar 

  26. Mekbib DB, Debeli DK, Zhang L, Fang S, Shao Y, Yang W, Han J, Jiang H, Zhu J, Zhao Z (2021) A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke. Ann N Y Acad Sci 1493:75–89

    Article  PubMed  Google Scholar 

  27. Ögün MN, Kurul R, Yaşar MF, Turkoglu SA, Avci Ş, Yildiz N (2019) Effect of leap motion-based 3D immersive virtual reality usage on upper extremity function in ischemic stroke patients. Arq Neuropsiquiatr 77:681–688

    Article  PubMed  Google Scholar 

  28. Kiper P, Szczudlik A, Agostini M, Opara J, Nowobilski R, Ventura L, Tonin P, Turolla A (2018) Virtual reality for upper limb rehabilitation in subacute and chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil 99:834–842

  29. Kottink AI, Prange GB, Krabben T, Rietman JS, Buurke JH (2014) Gaming and conventional exercises for improvement of arm function after stroke: a randomized controlled pilot study. Games Health J 3:184–191

  30. Oh Y, Kim G, Han K, Won YH, Park S, Seo J, Ko M (2019) Efficacy of virtual reality combined with real instrument training for patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil 100:1400–1408

    Article  PubMed  Google Scholar 

  31. Piron L, Turolla A, Agostini M, Zucconi CS, Ventura L, Tonin P, Dam M (2010) Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair 24:501–508

    Article  PubMed  Google Scholar 

  32. Shin J, Kim M, Lee J, Jeon Y, Kim S, Lee S, Seo B, Choi Y (2016) Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil 13:1–10

    Article  Google Scholar 

  33. Shin S, Lee H, Chang WH, Ko SH, Shin Y, Kim Y (2022) A smart glove digital system promotes restoration of upper limb motor dunction and enhances cortical hemodynamic changes in subacute stroke patients with mild to moderate weakness: a randomized controlled trial. J Clin Med 11:7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ain QU, Khan S, Ilyas S, Yaseen A, Tariq I, Liu T, Wang J (2021) Additional effects of Xbox kinect training on upper limb function in chronic stroke patients: a randomized control trial. Healthcare 9:242

  35. Hung J, Chou C, Chang Y, Wu C, Chang K, Wu W, Howell S (2019) Comparison of Kinect2Scratch game-based training and therapist-based training for the improvement of upper extremity functions of patients with chronic stroke: a randomized controlled single-blinded trial. Eur J Phys Rehabil Med 55:542–550

    Article  PubMed  Google Scholar 

  36. Kim W, Cho S, Park SH, Lee J, Kwon S, Paik N (2018) A low cost kinect-based virtual rehabilitation system for inpatient rehabilitation of the upper limb in patients with subacute stroke: a randomized, double-blind, sham-controlled pilot trial. Medicine 97:e11173

  37. Lee M, Son J, Kim J, Pyun S, Eun S, Yoon B (2016) Comparison of individualized virtual reality-and group-based rehabilitation in older adults with chronic stroke in community settings: a pilot randomized controlled trial. Eur J Integr Med 8:738–746

    Article  Google Scholar 

  38. Choi JH, Han EY, Kim BR, Kim SM, Im SH, Lee SY, Hyun CW (2014) Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Ann Rehabil Med 38:485–493

    Article  PubMed  PubMed Central  Google Scholar 

  39. da Silva Ribeiro NM, Ferraz DD, Pedreira É, Pinheiro Í, da Silva Pinto AC, Neto MG, Dos Santos LRA, Pozzato MGG, Pinho RS, Masruha MR (2015) Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Top Stroke Rehabil 22:299–305

    Article  PubMed  Google Scholar 

  40. Junior VAdS, Santos MdS, Ribeiro NMdS, Maldonado IL (2019) Combining proprioceptive neuromuscular facilitation and virtual reality for improving sensorimotor function in stroke survivors: a randomized clinical trial. J Cent Nerv Syst Dis 11:1179573519863826

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kong K, Loh Y, Thia E, Chai A, Ng C, Soh Y, Toh S, Tjan S (2016) Efficacy of a virtual reality commercial gaming device in upper limb recovery after stroke: a randomized, controlled study. Top Stroke Rehabil 23:333–340

    Article  PubMed  Google Scholar 

  42. Térémetz M, Garcia A, Hanneton S, Roby-Brami A, Roche N, Bensmail D, Lindberg P, Robertson JV (2022) Improving upper-limb and trunk kinematics by interactive gaming in individuals with chronic stroke: a single-blinded RCT. Ann Phys Rehabil Med 65:101622

    Article  PubMed  Google Scholar 

  43. Dias S, Sutton AJ, Ades AE, Welton NJ (2013) Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making 33:607–617

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gladstone DJ, Danells CJ, Black SE (2002) The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 16:232–240

    Article  PubMed  Google Scholar 

  45. Lange B, Koenig S, Chang C, McConnell E, Suma E, Bolas M, Rizzo A (2012) Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil Rehabil 34:1863–1870

    Article  PubMed  Google Scholar 

  46. Bohil CJ, Alicea B, Biocca FA (2011) Virtual reality in neuroscience research and therapy. Nat Rev Neurosci 12:752–762

    Article  CAS  PubMed  Google Scholar 

  47. Juliano JM, Spicer RP, Vourvopoulos A, Lefebvre S, Jann K, Ard T, Santarnecchi E, Krum DM, Liew S (2020) Embodiment is related to better performance on a brain–computer interface in immersive virtual reality: A pilot study. Sensors 20:1204

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43:2819–2828

    Article  PubMed  Google Scholar 

  49. Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure PF (2019) Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair 33:112–129

    Article  PubMed  PubMed Central  Google Scholar 

  50. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M (2017) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008349.pub4

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Hao or Zhengting He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent statement

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Appendix 1. Search strategies in each database

Appendix 1. Search strategies in each database

Medline (Ovid) Footnote 1

1 "virtual realit$".ab,ti.

2 "virtual environment$".ab,ti.

3 "augmented realit$".ab,ti.

4 "mixed realit$".ab,ti.

5 "video gam$".ab,ti.

6 exergam$.ab,ti.

7 "serious gam$".ab,ti.

8 Kinect.ab,ti.

9 Wii.ab,ti.

10 (head mounted adj5 devic$).ab,ti.

11 (head mounted adj5 displa$).ab,ti.

12 "smart glass$".ab,ti.

13 smartglass$.ab,ti.

14 arm$.ab,ti.

15 hand$.ab,ti.

16 "upper limb$".ab,ti.

17 "upper extremit$".ab,ti.

18 $stroke.ab,ti.

19 "cerebral vascular acciden$".ab,ti.

20 "cerebral vascular event$".ab,ti.

21 "cerebrovascular acciden$".ab,ti.

22 "cerebrovascular event$".ab,ti.

23 hemiplegi$.ab,ti

24 hemiparesis.ab,ti.

25 randomized controlled trial.pt.

26 controlled clinical trial.pt.

27 randomized.ab.

28 placebo.ab.

29 drug therapy.fs.

30 randomly.ab.

31 trial.ab.

32 groups.ab.

33 exp virtual reality/

34 exp augmented reality/

35 exp Video Games/

36 exp exergaming/

37 exp Smart Glasses/

38 exp Upper Extremity/

39 exp Stroke/

40 exp animals/ not humans.sh.

41 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13

42 14 or 15 or 16 or 17

43 18 or 19 or 20 or 21 or 22 or 23 or 24

44 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32

45 33 or 34 or 35 or 36 or 37

46 41 or 45

47 38 or 42

48 39 or 43

49 44 not 40

50 46 and 47 and 48 and 49

Embase Footnote 2

#1 'virtual realit*':ab,ti

#2 'virtual environment*':ab,ti

#3 'augmented realit*':ab,ti

#4 'mixed realit*':ab,ti

#5 'video gam*':ab,ti

#6 exergam*:ab,ti

#7 'serious gam*':ab,ti

#8 Kinect:ab,ti

#9 wii:ab,ti

#10 ('head mounted' NEAR/5 devic*):ab,ti

#11 ('head mounted' NEAR/5 displa*):ab,ti

#12 'smart glass*':ab,ti

#13 smartglass*:ab,ti

#14 arm*:ab,ti

#15 hand*:ab,ti

#16 'upper limb*':ab,ti

#17 'upper extremit*':ab,ti

#18 stroke:ab,ti

#19 'post-stroke':ab,ti

#20 poststroke:ab,ti

#21 'cerebral vascular acciden*':ab,ti

#22 'cerebral vascular event*':ab,ti

#23 'cerebrovascular acciden*':ab,ti

#24 'cerebrovascular event*':ab,ti

#25 hemiplegi*:ab,ti

#26 hemiparesis:ab,ti

#27 'randomized controlled trial'/de

#28 'controlled clinical trial'/de

#29 random*:ti,ab,tt

#30 'randomization'/de

#31 'intermethod comparison'/de

#32 placebo:ti,ab,tt

#33 compare:ti,tt OR compared:ti,tt OR comparison:ti,tt

#34 (evaluated:ab OR evaluate:ab OR evaluating:ab OR assessed:ab OR assess:ab) AND (compare:ab OR compared:ab OR comparing:ab OR comparison:ab)

#35 (open NEXT/1 label):ti,ab,tt

#36 ((double OR single OR doubly OR singly) NEXT/1 (blind OR blinded OR blindly)):ti,ab,tt.

#37 'double blind procedure'/de

#38 (parallel NEXT/1 group*):ti,ab,tt

#39 crossover:ti,ab,tt OR 'cross over':ti,ab,tt

#40 ((assign* OR match OR matched OR allocation) NEAR/6 (alternate OR group OR groups OR intervention OR interventions OR patient OR patients OR subject OR subjects OR participant OR participants)):ti,ab,tt

#41 assigned:ti,ab,tt OR allocated:ti,ab,tt

#42 (controlled NEAR/8 (study OR design OR trial)):ti,ab,tt

#43 volunteer:ti,ab,tt OR volunteers:ti,ab,tt

#44 'human experiment'/de

#45 trial:ti,tt

#46 ((random* NEXT/1 sampl* NEAR/8 ('cross section*' OR questionnaire* OR survey OR surveys OR database OR databases)):ti,ab,tt) NOT ('comparative study'/de OR 'controlled study'/de OR 'randomised controlled':ti,ab,tt OR 'randomized controlled':ti,ab,tt OR 'randomly assigned':ti,ab,tt)

#47 'cross‐sectional study' NOT ('randomized controlled trial'/de OR 'controlled clinical study'/de OR 'controlled study'/de OR 'randomised controlled':ti,ab,tt OR 'randomized controlled':ti,ab,tt OR 'control group':ti,ab,tt OR 'control groups':ti,ab,tt)

#48 'case control*':ti,ab,tt AND random*:ti,ab,tt NOT ('randomised controlled':ti,ab,tt OR 'randomized controlled':ti,ab,tt)

#49 'systematic review':ti,tt NOT (trial:ti,tt OR study:ti,tt)

#50 nonrandom*:ti,ab,tt NOT random*:ti,ab,tt

#51 'random field*':ti,ab,tt

#52 ('random cluster' NEAR/4 sampl*):ti,ab,tt

#53 review:ab AND review:it NOT trial:ti,tt

#54 'we searched':ab AND (review:ti,tt OR review:it)

#55 'update review':ab

#56 (databases NEAR/5 searched):ab

#57 (rat:ti,tt OR rats:ti,tt OR mouse:ti,tt OR mice:ti,tt OR swine:ti,tt OR porcine:ti,tt OR murine:ti,tt OR sheep:ti,tt OR lambs:ti,tt OR pigs:ti,tt OR piglets:ti,tt OR rabbit:ti,tt OR rabbits:ti,tt OR cat:ti,tt OR cats:ti,tt OR dog:ti,tt OR dogs:ti,tt OR cattle:ti,tt OR bovine:ti,tt OR monkey:ti,tt OR monkeys:ti,tt OR trout:ti,tt OR marmoset*:ti,tt) AND 'animal experiment'/de

#58 'animal experiment'/de NOT ('human experiment'/de OR 'human'/de)

#59 'virtual reality'/exp

#60 'virtual environment'/exp

#61 'augmented reality'/exp

#62 'mixed reality'/exp

#63 'video game'/exp

#64 'serious game'/exp

#65 'head-mounted display'/exp

#66 'hand'/exp

#67 'upper limb'/exp

#68 'cerebrovascular accident'/exp

#69 'cerebrovascular event'/exp

#70 'hemiplegia'/exp

#71 'hemiparesis'/exp

#72 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13

#73 #14 OR #15 OR #16 OR #17

#74 #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26

#75 #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41 OR #42 OR #43 OR #44 OR #45

#76 #46 OR #47 OR #48 OR #49 OR #50 OR #51 OR #52 OR #53 OR #54 OR #55 OR #56 OR #57 OR #58

#77 #59 OR #60 OR #61 OR #62 OR #63 OR #64 OR #65

#78 #66 OR #67

#79 #68 OR #69 OR #70 OR #71

#80 #72 OR #77

#81 #73 OR #78

#82 #74 OR #79

#83 #75 NOT #76

#84 #80 AND #81 AND #82 AND #83

CINAHL Plus Footnote 3

S1 TI (virtual realit*) OR AB (virtual realit*)

S2 TI (virtual environment*) OR AB (virtual environment*)

S3 TI (augmented realit*) OR AB (augmented realit*)

S4 TI (mixed realit*) OR AB (mixed realit*)

S5 TI (video gam*) OR AB (video gam*)

S6 TI (exergam*) OR AB (exergam*)

S7 TI (serious gam*) OR AB (serious gam*)

S8 TI Kinect OR AB Kinect

S9 TI Wii OR AB Wii

S10 TI ((head mounted) N5 (devic*)) OR AB ((head mounted) N5 (devic*))

S11 TI ((head mounted) N5 (displa*)) OR AB ((head mounted) N5 (displa*))

S12 TI (smart glass*) OR AB (smart glass*)

S13 TI (smartglass*) OR AB (smartglass*)

S14 TI (arm*) OR AB (arm*)

S15 TI (hand*) OR AB (hand*)

S16 TI (upper limb*) OR AB (upper limb*)

S17 TI (upper extremit*) OR AB (upper extremit*)

S18 TI stroke OR AB stroke

S19 TI post-stroke OR AB post-stroke

S20 TI poststroke OR AB poststroke

S21 TI (cerebral vascular acciden*) OR AB (cerebral vascular acciden*)

S22 TI (cerebral vascular event*) OR AB (cerebral vascular event*)

S23 TI (cerebrovascular acciden*) OR AB (cerebrovascular acciden*)

S24 TI (cerebrovascular event*) OR AB (cerebrovascular event*)

S25 TI (hemiplegi*) OR AB (hemiplegi*)

S26 TI hemiparesis OR AB hemiparesis

S27 MH randomized controlled trials

S28 MH double‐blind studies

S29 MH single‐blind studies

S30 MH random assignment

S31 MH pretest‐posttest design

S32 MH cluster sample

S33 TI (randomised OR randomized)

S34 AB (random*)

S35 TI (trial)

S36 MH (sample size) AND AB ( assigned OR allocated OR control)

S37 MH (placebos)

S38 PT (randomized controlled trial)

S39 AB (control W5 group)

S40 MH (crossover design) OR MH (comparative studies)

S41 AB (cluster W3 RCT)

S42 MH animals + 

S43 MH (animal studies)

S44 TI (animal model*)

S45 MH (human)

S46 MH (Virtual Reality +)

S47 MH (Augmented Reality)

S48 MH (Video Games +)

S49 MH (Smart Glasses)

S50 MH (Upper Extremity +)

S51 MH (Stroke +)

S52 MH (Hemiplegia)

S53 S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13

S54 S14 OR S15 OR S16 OR S17

S55 S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR S26

S56 S27 OR S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38 OR S39 OR S40 OR S41

S57 S42 OR S43 OR S44

S58 S57 NOT S45

S59 S56 NOT S58

S60 S46 OR S47 OR S48 OR S49

S61 S51 OR S52

S62 S53 OR S60

S63 S50 OR S54

S64 S55 OR S61

S65 S59 AND S62 AND S63 AND S64

APA PsycInfo Footnote 4

S1 TI (virtual realit*) OR AB (virtual realit*)

S2 TI (virtual environment*) OR AB (virtual environment*)

S3 TI (augmented realit*) OR AB (augmented realit*)

S4 TI (mixed realit*) OR AB (mixed realit*)

S5 TI (video gam*) OR AB (video gam*)

S6 TI (exergam*) OR AB (exergam*)

S7 TI (serious gam*) OR AB (serious gam*)

S8 TI Kinect OR AB Kinect

S9 TI Wii OR AB Wii

S10 TI ((head mounted) N5 (devic*)) OR AB ((head mounted) N5 (devic*))

S11 TI ((head mounted) N5 (displa*)) OR AB ((head mounted) N5 (displa*))

S12 TI (smart glass*) OR AB (smart glass*)

S13 TI (smartglass*) OR AB (smartglass*)

S14 TI (arm*) OR AB (arm*)

S15 TI (hand*) OR AB (hand*)

S16 TI (upper limb*) OR AB (upper limb*)

S17 TI (upper extremit*) OR AB (upper extremit*)

S18 TI stroke OR AB stroke

S19 TI post-stroke OR AB post-stroke

S20 TI poststroke OR AB poststroke

S21 TI (cerebral vascular acciden*) OR AB (cerebral vascular acciden*)

S22 TI (cerebral vascular event*) OR AB (cerebral vascular event*)

S23 TI (cerebrovascular acciden*) OR AB (cerebrovascular acciden*)

S24 TI (cerebrovascular event*) OR AB (cerebrovascular event*)

S25 TI (hemiplegi*) OR AB (hemiplegi*)

S26 TI hemiparesis OR AB hemiparesis

S27 SU.EXACT(Treatment Effectiveness Evaluation)

S28 SU.EXACT.EXPLODE(Treatment Outcomes)

S29 SU.EXACT(Placebo)

S30 SU.EXACT(Followup Studies)

S31 (placebo*)

S32 (random*)

S33 (comparative stud*)

S34 (clinical N3 trial*)

S35 (research N3 design)

S36 (evaluat* N3 stud*)

S37 (prospectiv* N3 stud*)

S38 (singl* OR doubl* OR trebl* OR tripl*) N3 (blind* OR mask*)

S39 DE (Virtual Reality) OR DE (Augmented Reality)

S40 MM (Computer Games)

S41 MM "Arm (Anatomy)"

S42 DE "Hand (Anatomy)" OR DE "Fingers (Anatomy)" OR DE "Palm (Anatomy)"

S43 MM (Cerebrovascular Accidents)

S44 MM (Hemiparesis) OR MM (Hemiplegia)

S45 S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13

S46 S14 OR S15 OR S16 OR S17

S47 S18 OR S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR S26

S48 S27 OR S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38

S49 S39 OR S40

S50 S41 OR S42

S51 S43 OR S44

S52 S45 OR S49

S53 S46 OR S50

S54 S47 OR S51

S55 S48 AND S52 AND S53 AND S54

Scopus Footnote 5

( ( ( TITLE ( "virtual realit*") OR ABS ( "virtual realit*"))) OR ( ( TITLE ( "virtual environment*") OR ABS ( "virtual environment*"))) OR ( ( TITLE ( "augmented realit*") OR ABS ( "augmented realit*"))) OR ( ( TITLE ( "mixed realit*") OR ABS ( "mixed realit*"))) OR ( ( TITLE ( "video gam*") OR ABS ( "video gam*"))) OR ( ( TITLE ( exergam*) OR ABS ( exergam*))) OR ( ( TITLE ( "serious gam*") OR ABS ( "serious gam*"))) OR ( ( TITLE ( kinect) OR ABS ( kinect))) OR ( ( TITLE ( wii) OR ABS ( wii))) OR ( ( TITLE ( "head mounted" W/5 devic*) OR ABS ( "head mounted" W/5 devic*))) OR ( ( TITLE ( "head mounted" W/5 displa*) OR ABS ( "head mounted" W/5 displa*))) OR ( ( TITLE ( "smart glass*") OR ABS ( "smart glass*"))) OR ( ( TITLE ( smartglass*) OR ABS ( smartglass*)))) AND ( ( ( TITLE ( arm*) OR ABS ( arm*))) OR ( ( TITLE ( hand*) OR ABS ( hand*))) OR ( ( TITLE ( "upper limb*") OR ABS ( "upper limb*"))) OR ( ( TITLE ( "upper extremit*") OR ABS ( "upper extremit*")))) AND ( ( ( TITLE ( *stroke) OR ABS ( *stroke))) OR ( ( TITLE ( "cerebral vascular acciden*") OR ABS ( "cerebral vascular acciden*"))) OR ( ( TITLE ( "cerebral vascular event*") OR ABS ( "cerebral vascular event*"))) OR ( ( TITLE ( "cerebrovascular acciden*") OR ABS ( "cerebrovascular acciden*"))) OR ( ( TITLE ( "cerebrovascular event*") OR ABS ( "cerebrovascular event*"))) OR ( ( TITLE ( hemiplegi*) OR ABS ( hemiplegi*))) OR ( ( TITLE ( hemiparesis) OR ABS ( hemiparesis)))) AND ( ( INDEXTERMS ( "clinical trials" OR "clinical trials as a topic" OR "randomized controlled trial" OR "Randomized Controlled Trials as Topic" OR "controlled clinical trial" OR "Controlled Clinical Trials" OR "random allocation" OR "Double-Blind Method" OR "Single-Blind Method" OR "Cross-Over Studies" OR "Placebos" OR "multicenter study" OR "double blind procedure" OR "single blind procedure" OR "crossover procedure" OR "clinical trial" OR "controlled study" OR "randomization" OR "placebo")) OR ( TITLE-ABS-KEY ( ( "clinical trials" OR "clinical trials as a topic" OR "randomized controlled trial" OR "Randomized Controlled Trials as Topic" OR "controlled clinical trial" OR "Controlled Clinical Trials as Topic" OR "random allocation" OR "randomly allocated" OR "allocated randomly" OR "Double-Blind Method" OR "Single-Blind Method" OR "Cross-Over Studies" OR "Placebos" OR "cross-over trial" OR "single blind" OR "double blind" OR "factorial design" OR "factorial trial"))) OR ( TITLE-ABS ( clinical AND trial* OR trial* OR rct* OR random* OR blind*)))

Figure 4

Fig. 4
figure 4

Comparison-adjusted funnel plot of all included studies

Figure 5

Fig. 5
figure 5

Comparison-adjusted funnel plot for sensitivity analysis on excluding studies with outlier effect sizes

Table 4

Table 4 League table for upper extremity function based on Fugl-Meyer Assessment for sensitivity analysis on excluding studies with outlier effect sizes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., He, Z., Yu, X. et al. Comparison of immersive and non-immersive virtual reality for upper extremity functional recovery in patients with stroke: a systematic review and network meta-analysis. Neurol Sci 44, 2679–2697 (2023). https://doi.org/10.1007/s10072-023-06742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06742-8

Keywords

Navigation