Skip to main content

Advertisement

Log in

N200 and P300 component changes in Parkinson’s disease: a meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Cognitive impairment can seriously affect the quality of life of Parkinson’s disease (PD) patients. Although numerous studies showed that N200, P300 latency and amplitude are correlated with cognitive functions, there is a sufficient amount of controversial results. Therefore, it is necessary to conduct a meta-analysis of N200, P300 latency and amplitude data of event-related potential (ERP) in PD.

Methods

We systematically searched on PubMed and Web of Science for PD-related ERP studies published before December 2021. Standard mean difference (SMD) and 95% confidence interval (CI) estimates of N200 and P300 components were compared among PD patients, PD dementia (PDD) patients, PD non-dementia (PDND) patient, and healthy control (HC).

Results

Our meta-analysis showed prolonged N200 latency at the Fz, Cz electrode sites, prolonged P300 latency at the Fz sites in PD patients, compared to HC; prolonged N200 latency at the Cz, Pz electrode sites in PDND patients, compared to HC; prolonged P300 latency at the Cz site in PDD patients, compared to PDND patients; and reduced P300 amplitude at the Fz electrode site in PDND patients, compared to HC.

Conclusions

N200 and P300 component may be potential electrophysiological biomarkers of early cognitive impairment in PD patients. Future studies are needed to confirm this conclusion. Estimates of N200 and P300 component can be a valuable support for clinicians in diagnosis of early cognitive impairment in PD patients due to the simplicity and non-invasiveness of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data were included with supplementary table 1.

References

  1. Levine CB, Fahrbach KR, Siderowf AD, Estok RP, Ludensky VM, Ross SD (2003) Diagnosis and treatment of Parkinson’s disease: a systematic review of the literature. Evid Rep Technol Assess (Summ) 57:1–4

    Google Scholar 

  2. Chaudhuri KR (2016) Progression and biomarkers for Parkinson disease: merging motor with nonmotor symptoms. Neurology 87(2):128–129

    Article  PubMed  Google Scholar 

  3. Helfrich RF, Knight RT (2019) Cognitive neurophysiology: event-related potentials. Handb Clin Neurol 160:543–558

    Article  PubMed  Google Scholar 

  4. Woodman GF (2010) A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys 72(8):2031–2046

    Article  PubMed  Google Scholar 

  5. Georgiev D, Lange F, Seer C, Kopp B, Jahanshahi M (2016) Movement-related potentials in Parkinson’s disease. Clin Neurophysiol 127(6):2509–2519

    Article  PubMed  Google Scholar 

  6. Philipova D, Gatchev G, Vladova T, Georgiev D (1997) Event-related potentials in parkinsonian patients under auditory discrimination tasks. Int J Psychophysiol 27(1):69–78

    Article  CAS  PubMed  Google Scholar 

  7. Weber J, Abeln V, Steichele K, Foitschik T, Stuckenschneider T. (2021) Inefficient resource allocation is associated with reduced alpha activity in parietal regions in individuals with Parkinson's disease. Eur J Neurosci 53(4):1225–37

  8. Yilmaz FT, Özkaynak SS, Barçin E (2017) Contribution of auditory P300 test to the diagnosis of mild cognitive impairment in Parkinson's disease. Neurol Sci 38(12):2103–9

  9. Hu P, Cao R, Fang J, Yang Q, Liu T, Yu F et al (2021) Alterations in event-related potential responses to empathy for pain in Parkinson’s disease on and off medication. Clin Neurophysiol 132(4):914–921

    Article  PubMed  Google Scholar 

  10. Solís-Vivanco R, Rodríguez-Violante M, Rodríguez-Agudelo Y, Schilmann A, Rodríguez-Ortiz U, Ricardo-Garcell J (2015) The P3a wave: a reliable neurophysiological measure of Parkinson’s disease duration and severity. Clin Neurophysiol 126(11):2142–2149

    Article  PubMed  Google Scholar 

  11. Suvorov N, Krylov I, Voilokova N (1999) Voluntary movements and event-related potentials in Parkinsonians (stages 1–2). Int J Psychophysiol 31(2):95–110

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Kuroiwa Y, Kamitani T (1999) Visual event-related potential changes at two different tasks in nondemented Parkinson’s disease. J Neurol Sci 164(2):139–147

    Article  CAS  PubMed  Google Scholar 

  13. Pekkonen E, Jousmäki V, Reinikainen K, Partanen J (1995) Automatic auditory discrimination is impaired in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 95(1):47–52

    Article  CAS  PubMed  Google Scholar 

  14. Stanzione P, Semprini R, Pierantozzi M, Santilli AM, Fadda L, Traversa R et al (1998) Age and stage dependency of P300 latency alterations in non-demented Parkinson’s disease patients without therapy. Electroencephalogr Clin Neurophysiol 108(1):80–91

    Article  CAS  PubMed  Google Scholar 

  15. Antal A, Dibó G, Kéri S, Gábor K, Janka Z, Vécsei L et al (2000) P300 component of visual event-related potentials distinguishes patients with idiopathic Parkinson’s disease from patients with essential tremor. J Neural Transm (Vienna, Austria : 1996) 107(7):787–797

    Article  CAS  Google Scholar 

  16. Bocquillon P, Bourriez JL, Palmero-Soler E, Destée A, Defebvre L, Derambure P et al (2012) Role of basal ganglia circuits in resisting interference by distracters: a swLORETA study. PLoS One 7(3):e34239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Özmüş G, Yerlikaya D, Gökçeoğlu A, EmekSavaş DD, Çakmur R, DönmezÇolakoğlu B et al (2017) Demonstration of early cognitive impairment in Parkinson’s disease with visual P300 responses. Noro Psikiyatr Ars 54(1):21–27

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pauletti C, Mannarelli D, Locuratolo N, Currà A, Marinelli L, Fattapposta F (2019) Central fatigue and attentional processing in Parkinson’s disease: an event-related potentials study. Clin Neurophysiol 130(5):692–700

    Article  PubMed  Google Scholar 

  19. Gaudreault PO, Gagnon JF, Montplaisir J, Vendette M, Postuma RB, Gagnon K et al (2013) Abnormal occipital event-related potentials in Parkinson’s disease with concomitant REM sleep behavior disorder. Parkinsonism Relat Disord 19(2):212–217

    Article  PubMed  Google Scholar 

  20. Wang L, Kuroiwa Y, Li M, Kamitani T, Wang J, Takahashi T et al (2000) The correlation between P300 alterations and regional cerebral blood flow in non-demented Parkinson’s disease. Neurosci Lett 282(3):133–136

    Article  CAS  PubMed  Google Scholar 

  21. Ebmeier KP, Potter DD, Cochrane RH, Crawford JR, Stewart L, Calder SA et al (1992) Event related potentials, reaction time, and cognitive performance in idiopathic Parkinson’s disease. Biol Psychol 33(1):73–89

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Kuroiwa Y, Kamitani T, Li M, Takahashi T, Suzuki Y et al (2000) Visual event-related potentials in progressive supranuclear palsy, corticobasal degeneration, striatonigral degeneration, and Parkinson’s disease. J Neurol 247(5):356–363

    Article  CAS  PubMed  Google Scholar 

  23. Antal A, Pfeiffer R, Bodis-Wollner I (1996) Simultaneously evoked primary and cognitive visual evoked potentials distinguish younger and older patients with Parkinson’s disease. J Neural Transm (Vienna) 103(8–9):1053–1067

    Article  CAS  Google Scholar 

  24. Bokura H, Yamaguchi S, Kobayashi S (2005) Event-related potentials for response inhibition in Parkinson’s disease. Neuropsychologia 43(6):967–975

    Article  PubMed  Google Scholar 

  25. Wang L, Kuroiwa Y, Kamitani T, Takahashi T, Suzuki Y, Hasegawa O (1999) Effect of interstimulus interval on visual P300 in Parkinson’s disease. J Neurol Neurosurg Psychiatry 67(4):497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Filipović S, Kostić VS, Sternić N, Marinković Z, Ocić G (1990) Auditory event-related potentials in different types of dementia. Eur Neurol 30(4):189–193

    Article  PubMed  Google Scholar 

  27. Tachibana H, Toda L, Sugita M (1992) Actively and passively evoked P3 latency of event-related potentials in Parkinson’s disease. J Neurol Sci 111(2):134–142

    Article  CAS  PubMed  Google Scholar 

  28. Matsui H, Nishinaka K, Oda M, Kubori T, Udaka F (2007) Auditory event-related potentials in Parkinson’s disease: prominent correlation with attention. Parkinsonism Relat Disord 13(7):394–398

    Article  PubMed  Google Scholar 

  29. Beste C, Dziobek I, Hielscher H, Willemssen R, Falkenstein M (2009) Effects of stimulus-response compatibility on inhibitory processes in Parkinson’s disease. Eur J Neurosci 29(4):855–860

    Article  PubMed  Google Scholar 

  30. Miller IN, Neargarder S, Risi MM, Cronin-Golomb A (2013) Frontal and posterior subtypes of neuropsychological deficit in Parkinson’s disease. Behav Neurosci 127(2):175–183

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goldman JG, Weis H, Stebbins G, Bernard B, Goetz CG (2012) Clinical differences among mild cognitive impairment subtypes in Parkinson’s disease. Mov Disord 27(9):1129–1136

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kalbe E, Rehberg SP, Heber I, Kronenbuerger M, Schulz JB, Storch A et al (2016) Subtypes of mild cognitive impairment in patients with Parkinson’s disease: evidence from the LANDSCAPE study. J Neurol Neurosurg Psychiatry 87(10):1099–1105

    Article  PubMed  Google Scholar 

  33. Pfeiffer HC, Løkkegaard A, Zoetmulder M, Friberg L, Werdelin L (2014) Cognitive impairment in early-stage non-demented Parkinson’s disease patients. Acta Neurol Scand 129(5):307–318

    Article  CAS  PubMed  Google Scholar 

  34. Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW et al (2009) The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain 132(Pt 11):2958–2969

    Article  PubMed  Google Scholar 

  35. Pal A, Pegwal N, Kaur S, Mehta N, Behari M, Sharma R (2018) Deficit in specific cognitive domains associated with dementia in Parkinson’s disease. J Clin Neurosci 57:116–120

    Article  PubMed  Google Scholar 

  36. Patel SH, Azzam PN (2005) Characterization of N200 and P300: selected studies of the Event-Related Potential. Int J Med Sci 2(4):147–154

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bennys K, Portet F, Touchon J, Rondouin G (2007) Diagnostic value of event-related evoked potentials N200 and P300 subcomponents in early diagnosis of Alzheimer’s disease and mild cognitive impairment. J Clin Neurophysiol 24(5):405–412

    Article  PubMed  Google Scholar 

  38. Dong G, Zhou H, Zhao X (2010) Impulse inhibition in people with Internet addiction disorder: electrophysiological evidence from a Go/NoGo study. Neurosci Lett 485(2):138–142

    Article  CAS  PubMed  Google Scholar 

  39. Magliero A, Bashore TR, Coles MG, Donchin E (1984) On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology 21(2):171–186

    Article  CAS  PubMed  Google Scholar 

  40. Fjell AM, Walhovd KB (2001) P300 and neuropsychological tests as measures of aging: scalp topography and cognitive changes. Brain Topogr 14(1):25–40

    Article  CAS  PubMed  Google Scholar 

  41. Kutas M, McCarthy G, Donchin E (1977) Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 197(4305):792–795

    Article  CAS  PubMed  Google Scholar 

  42. Kramer AF, Strayer DL (1988) Assessing the development of automatic processing: an application of dual-task and event-related brain potential methodologies. Biol Psychol 26(1–3):231–267

    Article  CAS  PubMed  Google Scholar 

  43. Kramer AF, Wickens CD, Donchin E (1983) An analysis of the processing requirements of a complex perceptual-motor task. Hum Factors 25(6):597–621

    Article  CAS  PubMed  Google Scholar 

  44. Polich J (1986) P300 development from auditory stimuli. Psychophysiology 23(5):590–597

    Article  CAS  PubMed  Google Scholar 

  45. Tokic K, Titlic M, Beganovic-Petrovic A, Suljic E, Romac R, Silic S (2016) P300 wave changes in patients with Parkinson’s disease. Med Arch (Sarajevo, Bosnia and Herzegovina) 70(6):453–456

    Google Scholar 

  46. Toda K, Tachibana H, Sugita M, Konishi K (1993) P300 and reaction time in Parkinson’s disease. J Geriatr Psychiatry Neurol 6(3):131–136

    Article  CAS  PubMed  Google Scholar 

  47. Piccirilli M, D’Alessandro P, Finali G, Piccinin GL, Agostini L (1989) Frontal lobe dysfunction in Parkinson’s disease: prognostic value for dementia? Eur Neurol 29(2):71–76

    Article  CAS  PubMed  Google Scholar 

  48. Taylor AE, Saint-Cyr JA, Lang AE (1990) Memory and learning in early Parkinson’s disease: evidence for a “frontal lobe syndrome.” Brain Cogn 13(2):211–232

    Article  CAS  PubMed  Google Scholar 

  49. Bès A, Güell A, Fabre N, Dupui P, Victor G, Géraud G (1983) Cerebral blood flow studied by Xenon-133 inhalation technique in parkinsonism: loss of hyperfrontal pattern. J Cereb Blood Flow Metab 3(1):33–37

    Article  PubMed  Google Scholar 

  50. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275(2):321–328

    Article  CAS  PubMed  Google Scholar 

  51. Gaspar P, Duyckaerts C, Alvarez C, Javoy-Agid F, Berger B (1991) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol 30(3):365–374

    Article  CAS  PubMed  Google Scholar 

  52. Stern Y, Mayeux R, Côté L (1984) Reaction time and vigilance in Parkinson’s disease Possible role of altered norepinephrine metabolism. Arch Neurol 41(10):1086–1089

    Article  CAS  PubMed  Google Scholar 

  53. Hs L, Sb D (2012) Cognitive dysfunction and depression in Parkinson’s disease: what can be learned from rodent models? Eur J Neurosci 35(12):1894–1907

    Article  Google Scholar 

  54. Khomenko IG, Pronina MV, Kataeva GV, Kropotov JD, Irishina YA, Susin DS (2020) Combined 18F-fluorodeoxyglucose positron emission tomography and event-related potentials study of the cognitive impairment mechanisms in Parkinson’s disease. J Clin Neurosci 72:335–341

    Article  CAS  PubMed  Google Scholar 

  55. Picco A, Morbelli S, Piccardo A, Arnaldi D, Girtler N, Brugnolo A et al (2015) Brain (18)F-DOPA PET and cognition in de novo Parkinson’s disease. Eur J Nucl Med Mol Imaging 42(7):1062–1070

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka H, Koenig T, Pascual-Marqui RD, Hirata K, Kochi K, Lehmann D (2000) Event-related potential and EEG measures in Parkinson’s disease without and with dementia. Dement Geriatr Cogn Disord 11(1):39–45

    Article  CAS  PubMed  Google Scholar 

  57. Hansch EC, Syndulko K, Cohen SN, Goldberg ZI, Potvin AR, Tourtellotte WW (1982) Cognition in Parkinson disease: an event-related potential perspective. Ann Neurol 11(6):599–607

    Article  CAS  PubMed  Google Scholar 

  58. Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45(1):152–170

    PubMed  Google Scholar 

  59. Nieuwenhuis S, Yeung N, van den Wildenberg W, Ridderinkhof KR (2003) Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn Affect Behav Neurosci 3(1):17–26

    Article  PubMed  Google Scholar 

  60. Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150(3700):1187–1188

    Article  CAS  PubMed  Google Scholar 

  61. Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9(4):456–479

    Article  CAS  PubMed  Google Scholar 

  62. Seer C, Lange F, Georgiev D, Jahanshahi M, Kopp B (2016) Event-related potentials and cognition in Parkinson’s disease: an integrative review. Neurosci Biobehav Rev 71:691–714

    Article  PubMed  Google Scholar 

  63. Polich J, Corey-Bloom J (2005) Alzheimer’s disease and P300: review and evaluation of task and modality. Curr Alzheimer Res 2(5):515–525

    Article  CAS  PubMed  Google Scholar 

  64. Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B et al (2011) MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord 26(10):1814–1824

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81901108).

Author information

Authors and Affiliations

Authors

Contributions

Hui Xu was in charge of article inclusion and had the major responsibility for data analysis and manuscript writing. Lihua Gu contributed to the design and plan of the present study, supervised the project, and provided funding. Shiyao Zhang was in charge of article inclusion and data collection. Yuchen Wu was in charge of article inclusion and data collection. Xiaojin Wei was in charge of data analysis. Caiyan Wang was in charge of data analysis. Yuhan Xu contributed to data analysis. Yijing Guo contributed to the design and plan of the present study and supervised the project and manuscript writing.

Corresponding author

Correspondence to Yijing Guo.

Ethics declarations

Ethical approval

None.

Research involving human participants and/or animals

The present study is a meta-analysis, which did not involve human participants and/or animals.

Informed consent

The present study is a meta-analysis. Thus, informed consent is not applicable for the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Gu, L., Zhang, S. et al. N200 and P300 component changes in Parkinson’s disease: a meta-analysis. Neurol Sci 43, 6719–6730 (2022). https://doi.org/10.1007/s10072-022-06348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06348-6

Keywords

Navigation