Skip to main content

Advertisement

Log in

Does transcranial direct current stimulation enhance cognitive performance in Parkinson’s disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study

  • Clinical Trial article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Parkinson’s disease-mild cognitive impairment (PD-MCI) is garnering attention as a key interventional period for cognitive impairment. Currently, there are no approved treatments for PD-MCI and encouraging results of transcranial direct current stimulation (tDCS) combined with other interventions have been proposed, though the efficacy and neural mechanisms of tDCS alone have not been studied in PD-MCI yet.

Objectives

The present double-blind, randomized, sham-controlled study assessed the effects of tDCS over the dorsolateral prefrontal cortex on cognitive functions via neuropsychological and electrophysiological evaluations in individuals with PD-MCI for the first time.

Method

Twenty-six individuals with PD-MCI were administered 10 sessions of active (n = 13) or sham (n = 13) prefrontal tDCS twice a day, for 5 days. Changes were tested through a comprehensive neuropsychological battery and event-related potential recordings, which were performed before, immediately, and 1 month after the administrations.

Results

Neuropsychological assessment showed an improvement in delayed recall and executive functions in the active group. N1 amplitudes in response to targets in the oddball test-likely indexing attention and discriminability and NoGo N2 amplitudes in the continuous performance test-likely indexing cognitive control and conflict monitoring increased in the active group. Active stimulation elicited higher benefits 1 month after the administrations.

Conclusion

The present findings substantiate the efficacy of tDCS on cognitive control and episodic memory, along with the neural underpinnings of cognitive control, highlighting its potential for therapeutic utility in PD-MCI.

Trial registration.

NCT 04,171,804.

Date of registration: 21/11/2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The corresponding author has full access to all data and material and can provide availability if needed.

Code availability

SPSS 25.0.

References

  1. DeMaagd G, Philip A (2015) Parkinson’s disease and its management part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P T 40:504–532

    PubMed  PubMed Central  Google Scholar 

  2. Litvan I, Goldman JG, Tröster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27:349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weil RS, Costantini AA, Schrag AE (2018) Mild cognitive impairment in Parkinson’s disease—what is it? Curr Neurol Neurosci Rep 18:1–11

    Article  Google Scholar 

  4. Wallace ER, Segerstrom SC, van Horne CG et al (2021) Meta-analysis of cognition in Parkinson’s disease mild cognitive impairment and dementia progression. Neuropsychol Rev:1–12. https://doi.org/10.1007/s11065-021-09502-7

  5. Biundo R, Weis L, Antonini A (2016) Cognitive decline in Parkinson’s disease: the complex picture. npj Park. Dis 2:1–7

    Google Scholar 

  6. Biundo R, Weis L, Fiorenzato E, Antonini A (2017) Cognitive rehabilitation in Parkinson’s disease: is it feasible? Arch Clin Neuropsychol 32:840–860

    Article  Google Scholar 

  7. Sun C, Armstrong MJ (2021) Treatment of Parkinson’s disease with cognitive impairment: current approaches and future directions. Behav Sci (Basel) 11:54. https://doi.org/10.3390/bs11040054

    Article  Google Scholar 

  8. Şirin TC, Aksu S, Kurt A et al (2019) Efficacy and mechanisms of transcranial electrical stimulation in headache disorders. Neurol Sci Neurophysiol 36:57–68

    Article  Google Scholar 

  9. Gomes-Osman J, Indahlastari A, Fried PJ et al (2018) Non-invasive brain stimulation: probing intracortical circuits and improving cognition in the aging brain. Front Aging Neurosci 10:177

    Article  Google Scholar 

  10. Cruz Gonzalez P, Fong KNK, Chung RCK et al (2018) Can transcranial direct-current stimulation alone or combined with cognitive training be used as a clinical intervention to improve cognitive functioning in persons with mild cognitive impairment and dementia? A systematic review and meta-analysis. Front Hum Neurosci 12:416

    Article  Google Scholar 

  11. Biundo R, Weis L, Fiorenzato E et al (2015) Double-blind randomized trial of t-DCS versus sham in Parkinson patients with mild cognitive impairment receiving cognitive training. Brain Stimul 8:1223–1225

    Article  Google Scholar 

  12. Manenti R, Brambilla M, Benussi A et al (2016) Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Mov Disord 31:715–724. https://doi.org/10.1002/mds.26561

    Article  PubMed  Google Scholar 

  13. Manenti R, Cotelli MS, Cobelli C et al (2018) Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson disease: a randomized, placebo-controlled study. Brain Stimul 11:1251–1262. https://doi.org/10.1016/j.brs.2018.07.046

    Article  PubMed  Google Scholar 

  14. Lawrence BJ, Gasson N, Johnson AR et al (2018) Cognitive training and transcranial direct current stimulation for mild cognitive impairment in Parkinson’s disease: a randomized controlled trial. Parkinsons Dis: Article ID 4318475. https://doi.org/10.1155/2018/4318475

  15. Seer C, Lange F, Georgiev D et al (2016) Event-related potentials and cognition in Parkinson’s disease: an integrative review. Neurosci Biobehav Rev 71:691–714. https://doi.org/10.1016/j.neubiorev.2016.08.003

    Article  PubMed  Google Scholar 

  16. Kim M, Bin KY, Lee TY, Kwon JS (2018) Modulation of electrophysiology by transcranial direct current stimulation in psychiatric disorders: a systematic review. Psychiatry Investig 15:434

    Article  Google Scholar 

  17. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184. https://doi.org/10.1136/JNNP.55.3.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Racette BA, Rundle M, Parsian A, Perlmutter JS (1999) Evaluation of a screening questionnaire for genetic studies of Parkinson’s disease. J Med Genet (Neuropsychiatr Genet) 88:539–543

    Article  CAS  Google Scholar 

  19. Uysal-Cantürk P, Hanağası HA, Bilgiç B et al (2018) An assessment of Movement Disorder Society Task Force diagnostic criteria for mild cognitive impairment in Parkinson’s disease. Eur J Neurol 25:148–153. https://doi.org/10.1111/ene.13467

    Article  PubMed  Google Scholar 

  20. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442. https://doi.org/10.1212/WNL.17.5.427

    Article  CAS  PubMed  Google Scholar 

  21. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. In: Behavior Research Methods. Psychonomic Society Inc., pp 175–191

  22. Tomlinson CL, Stowe R, Patel S et al (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653. https://doi.org/10.1002/mds.23429

    Article  PubMed  Google Scholar 

  23. Öktem Ö (1992) A verbal test of memory processes: a preliminary study. Archives of Neuropsychiatry 29(4):196–206

    Google Scholar 

  24. Uslu A, Ergen M, Demirci H et al (2020) Event-related potential changes due to early-onset Parkinson’s disease in parkin (PARK2) gene mutation carriers and non-carriers. Clin Neurophysiol 131:1444–1452. https://doi.org/10.1016/j.clinph.2020.02.030

    Article  PubMed  Google Scholar 

  25. Macmillan NA, Creelman CD (2004) Detection theory: a user’s guide, 2nd edn. Lawrence Erlbaum Associates

    Book  Google Scholar 

  26. Yang JC, Rodriguez A, Royston A et al (2016) Memantine improves attentional processes in fragile X-associated tremor/ataxia syndrome: electrophysiological evidence from a randomized controlled trial. Sci Rep 6:1–9. https://doi.org/10.1038/srep21719

    Article  CAS  Google Scholar 

  27. Incagli F, Tarantino V, Crescentini C, Vallesi A (2020) The effects of 8-week mindfulness-based stress reduction program on cognitive control: an EEG study. Mindfulness (N Y) 11:756–770. https://doi.org/10.1007/s12671-019-01288-3

    Article  Google Scholar 

  28. Barch DM, Carter CS, Braver TS et al (2001) Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry 58:280–288. https://doi.org/10.1001/archpsyc.58.3.280

    Article  CAS  PubMed  Google Scholar 

  29. Gonthier C, Macnamara BN, Chow M et al (2016) Inducing proactive control shifts in the AX-CPT. Front Psychol 7:1822. https://doi.org/10.3389/fpsyg.2016.01822

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gilmore CS, Dickmann PJ, Nelson BG et al (2018) Transcranial direct current stimulation (tDCS) paired with a decision-making task reduces risk-taking in a clinically impulsive sample. Brain Stimul 11:302–309. https://doi.org/10.1016/j.brs.2017.11.011

    Article  PubMed  Google Scholar 

  31. Yun K, Song I-U, Chung Y-A (2016) Changes in cerebral glucose metabolism after 3 weeks of noninvasive electrical stimulation of mild cognitive impairment patients. Alzheimers Res Ther 8:49. https://doi.org/10.1186/s13195-016-0218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  Google Scholar 

  33. Karamacoska D, Barry RJ, De Blasio FM, Steiner GZ (2019) EEG-ERP dynamics in a visual continuous performance test. Int J Psychophysiol 146:249–260. https://doi.org/10.1016/j.ijpsycho.2019.08.013

    Article  PubMed  Google Scholar 

  34. Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45:152–170

    Article  Google Scholar 

  35. Mcdonald JH (2009) Handbook of biological statistics second edition

  36. Ahn M, Ahn S, Hong JH et al (2013) Gamma band activity associated with BCI performance: simultaneous MEG/EEG study. Front Hum Neurosci 7:848. https://doi.org/10.3389/fnhum.2013.00848

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tejero G, Macizo P (2020) Simple additions: dissociation between retrieval and counting with electrophysiological indexes. Int J Psychophysiol 149:48–59. https://doi.org/10.1016/j.ijpsycho.2020.01.001

    Article  PubMed  Google Scholar 

  38. Santangelo G, Vitale C, Picillo M et al (2015) Mild cognitive impairment in newly diagnosed Parkinson’s disease: a longitudinal prospective study. Parkinsonism Relat Disord 21:1219–1226. https://doi.org/10.1016/j.parkreldis.2015.08.024

    Article  PubMed  Google Scholar 

  39. Pedersen KF, Larsen JP, Tysnes OB, Alves G (2013) Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study. JAMA Neurol 70:580–586. https://doi.org/10.1001/jamaneurol.2013.2110

    Article  PubMed  Google Scholar 

  40. Bueno MEB, do NascimentoNeto LI, Terra MB et al (2019) Effectiveness of acute transcranial direct current stimulation on non-motor and motor symptoms in Parkinson’s disease. Neurosci Lett 696:46–51. https://doi.org/10.1016/j.neulet.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  41. Loftus AM, Yalcin O, Baughman FD et al (2015) The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain Behav 5:e00332. https://doi.org/10.1002/brb3.332

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nelson JT, McKinley RA, Golob EJ et al (2014) Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage 85:909–917

    Article  Google Scholar 

  43. Fleck MS, Daselaar SM, Dobbins IG, Cabeza R (2006) Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb Cortex 16:1623–1630. https://doi.org/10.1093/cercor/bhj097

    Article  PubMed  Google Scholar 

  44. Gruber SA, Rogowska J, Holcomb P et al (2002) Stroop performance in normal control subjects: an fMRI study. Neuroimage 16:349–360. https://doi.org/10.1006/nimg.2002.1089

    Article  PubMed  Google Scholar 

  45. Monastero R, Cicero CE, Baschi R et al (2018) Mild cognitive impairment in Parkinson’s disease: the Parkinson’s disease cognitive study (PACOS). J Neurol 265:1050–1058. https://doi.org/10.1007/s00415-018-8800-4

    Article  PubMed  Google Scholar 

  46. Aarsland D, Bronnick K, Williams-Gray C et al (2010) Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 75:1062–1069. https://doi.org/10.1212/WNL.0b013e3181f39d0e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yarnall AJ, Breen DP, Duncan GW et al (2014) Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology 82:308–316. https://doi.org/10.1212/WNL.0000000000000066

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hobson P, Meara J (2004) Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord 19:1043–1049. https://doi.org/10.1002/mds.20216

    Article  PubMed  Google Scholar 

  49. Domellöf ME, Ekman U, Forsgren L, Elgh E (2015) Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol Scand 132:79–88. https://doi.org/10.1111/ane.12375

    Article  PubMed  Google Scholar 

  50. Huo L, Zhu X, Zheng Z et al (2019) Effects of transcranial direct current stimulation on episodic memory in older adults: a meta-analysis. Journals Gerontol Ser B 76(4):692–702. https://doi.org/10.1093/geronb/gbz130

    Article  Google Scholar 

  51. Getz SJ, Levin B (2017) Cognitive and neuropsychiatric features of early Parkinson’s disease. Arch Clin Neuropsychol 32:769–785

    Article  Google Scholar 

  52. Chung SJ, Park Y-H, Yoo HS et al (2019) Mild cognitive impairment reverters have a favorable cognitive prognosis and cortical integrity in Parkinson’s disease. Neurobiol Aging 78:168–177. https://doi.org/10.1016/j.neurobiolaging.2019.02.023

    Article  PubMed  Google Scholar 

  53. Compta Y, Pereira JB, Ríos J et al (2013) Combined dementia-risk biomarkers in Parkinson’s disease: a prospective longitudinal study. Park Relat Disord 19:717–724. https://doi.org/10.1016/j.parkreldis.2013.03.009

    Article  Google Scholar 

  54. Amboni M, Tessitore A, Esposito F et al (2015) Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease. J Neurol 262:425–434. https://doi.org/10.1007/s00415-014-7591-5

    Article  PubMed  Google Scholar 

  55. Klobušiakova P, Mareček R, Fousek J et al (2019) Connectivity between brain networks dynamically reflects cognitive status of Parkinson’s disease: a longitudinal study. J Alzheimer’s Dis 67:971–984. https://doi.org/10.3233/JAD-180834

    Article  Google Scholar 

  56. Guleken Z, Eskikurt G, Karamürsel S (2020) Investigation of the effects of transcranial direct current stimulation and neurofeedback by continuous performance test. Neurosci Lett 716:134648. https://doi.org/10.1016/j.neulet.2019.134648

    Article  CAS  PubMed  Google Scholar 

  57. Allenby C, Falcone M, Bernardo L et al (2018) Transcranial direct current brain stimulation decreases impulsivity in ADHD. Brain Stimul 11:974–981. https://doi.org/10.1016/j.brs.2018.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  58. Arbula S, Pacella V, De Pellegrin S et al (2017) Addressing the selective role of distinct prefrontal areas in response suppression: a study with brain tumor patients. Neuropsychologia 100:120–130. https://doi.org/10.1016/j.neuropsychologia.2017.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  59. Egner T, Gruzelier JH (2004) EEG Biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin Neurophysiol 115:131–139. https://doi.org/10.1016/S1388-2457(03)00353-5

    Article  CAS  PubMed  Google Scholar 

  60. Losier BJ, McGrath PJ, Klein RM (1996) Error patterns on the continuous performance test in non-medicated and medicated samples of children with and without ADHD: a meta-analytic review. J Child Psychol Psychiatry Allied Discip 37:971–987. https://doi.org/10.1111/j.1469-7610.1996.tb01494.x

    Article  CAS  Google Scholar 

  61. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  CAS  Google Scholar 

  62. Knechtel L, Schall U, Cooper G et al (2014) Transcranial direct current stimulation of prefrontal cortex: an auditory event-related potential and proton magnetic resonance spectroscopy study. Neurol Psychiatry Brain Res 20:96–101. https://doi.org/10.1016/j.npbr.2014.06.001

    Article  Google Scholar 

  63. Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425. https://doi.org/10.1111/j.1469-8986.1987.tb00311.x

    Article  PubMed  Google Scholar 

  64. Vaughn DA, Maggiora MB, Vaughn KJ et al (2021) Modulation of attention and stress with arousal: the mental and physical effects of riding a motorcycle. Brain Res 1752:147203. https://doi.org/10.1016/j.brainres.2020.147203

    Article  CAS  PubMed  Google Scholar 

  65. Wright MJ, Geffen GM, Geffen LB (1996) ERP Measures of stimulus processing during an auditory oddball task in Parkinson’s disease: evidence for an early information processing deficit. Park Relat Disord 2:13–21. https://doi.org/10.1016/1353-8020(95)00024-0

    Article  CAS  Google Scholar 

  66. Philipova D, Gatchev G, Vladova T, Georgiev D (1997) Event-related potentials in parkinsonian patients under auditory discrimination tasks. Int J Psychophysiol 27:69–78. https://doi.org/10.1016/S0167-8760(97)00783-6

    Article  CAS  PubMed  Google Scholar 

  67. Wang H, Wang Y, Wang D et al (2002) Cognitive impairment in Parkinson’s disease revealed by event-related potential N270. J Neurol Sci 194:49–53. https://doi.org/10.1016/s0022-510x(01)00674-8

    Article  CAS  PubMed  Google Scholar 

  68. Picton TW, Alain C, Woods DL et al (1999) Intracerebral sources of human auditory-evoked potentials. Audiol Neuro-Otology 4:64–79. https://doi.org/10.1159/000013823

    Article  CAS  Google Scholar 

  69. Giard MH, Perrin F, Echallier JF et al (1994) Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis. Electroencephalogr Clin Neurophysiol Evoked Potentials 92:238–252. https://doi.org/10.1016/0168-5597(94)90067-1

    Article  CAS  PubMed  Google Scholar 

  70. Anderer P, Pascual-Marqui RD, Semlitsch HV, Saletu B (1998) Differential effects of normal aging on sources of standard N1, target N1 and target P300 auditory event-related brain potentials revealed by low resolution electromagnetic tomography (LORETA). Electroencephalogr Clin Neurophysiol 108:160–174. https://doi.org/10.1016/s0168-5597(97)00080-4

    Article  CAS  PubMed  Google Scholar 

  71. Mulert C, Seifert C, Leicht G et al (2008) Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. Neuroimage 42:158–168. https://doi.org/10.1016/j.neuroimage.2008.04.236

    Article  PubMed  Google Scholar 

  72. Squires KC, Hillyard SA, Lindsay PH (1973) Vertex potentials evoked during auditory signal detection: Relation to decision criteria. Percept Psychophys 14:265–272. https://doi.org/10.3758/BF03212388

    Article  Google Scholar 

  73. Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180. https://doi.org/10.1126/science.182.4108.177

    Article  CAS  PubMed  Google Scholar 

  74. Ritter W, Simson R, Vaughan HG (1983) Event-related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology 20:168–179. https://doi.org/10.1111/j.1469-8986.1983.tb03283.x

    Article  CAS  PubMed  Google Scholar 

  75. Hunter M, Turner A, Fulham WR (2001) Visual signal detection measured by event-related potentials. Brain Cogn 46:342–356. https://doi.org/10.1006/brcg.2001.1290

    Article  CAS  PubMed  Google Scholar 

  76. Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37:190–203. https://doi.org/10.1017/S0048577200981265

    Article  CAS  PubMed  Google Scholar 

  77. Cammisuli DM, Pagni C, Palermo G et al (2021) Mild cognitive impairment in de novo Parkinson’s disease: selective attention deficit as early sign of neurocognitive decay. Front Psychol 12:847. https://doi.org/10.3389/fpsyg.2021.546476

    Article  Google Scholar 

  78. Dunn W, Rassovsky Y, Wynn JK et al (2016) Modulation of neurophysiological auditory processing measures by bilateral transcranial direct current stimulation in schizophrenia. Schizophr Res 174:189–191. https://doi.org/10.1016/j.schres.2016.04.021

    Article  PubMed  Google Scholar 

  79. Kim M, Lee TH, Hwang WJ et al (2020) Auditory P300 as a Neurophysiological correlate of symptomatic improvement by transcranial direct current stimulation in patients with schizophrenia: a pilot study. Clin EEG Neurosci 51:252–258. https://doi.org/10.1177/1550059418815228

    Article  PubMed  Google Scholar 

  80. Nikolin S, Martin D, Loo CK et al (2019) Assessing neurophysiological changes associated with combined transcranial direct current stimulation and cognitive emotional training for treatment-resistant depression. Eur J Neurosci 51:2119–2133. https://doi.org/10.1111/ejn.14656

    Article  Google Scholar 

  81. Fiene M, Rufener KS, Kuehne M et al (2018) Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis. J Neurol 265:607–617. https://doi.org/10.1007/s00415-018-8754-6

    Article  PubMed  Google Scholar 

  82. Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41:103–146. https://doi.org/10.1016/0301-0511(95)05130-9

    Article  CAS  PubMed  Google Scholar 

  83. Gratton G, Cooper P, Fabiani M et al (2018) Dynamics of cognitive control: theoretical bases, paradigms, and a view for the future. Psychophysiology 55:e13016

    Google Scholar 

  84. Wang D, Zhou C, Chang YK (2015) Acute exercise ameliorates craving and inhibitory deficits in methamphetamine: an ERP study. Physiol Behav 147:38–46. https://doi.org/10.1016/j.physbeh.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  85. Li Y, Wang L, Jia M et al (2017) The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. Plos One 12:e0179430. https://doi.org/10.1371/journal.pone.0179430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmajuk M, Liotti M, Busse L, Woldorff MG (2006) Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia 44:384–395. https://doi.org/10.1016/j.neuropsychologia.2005.06.005

    Article  PubMed  Google Scholar 

  87. Liotti M, Pliszka SR, Perez R et al (2005) Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex 41:377–388. https://doi.org/10.1016/S0010-9452(08)70274-0

    Article  PubMed  Google Scholar 

  88. Roche RAP, Garavan H, Foxe JJ, O’Mara SM (2005) Individual differences discriminate event-related potentials but not performance during response inhibition. Exp Brain Res 160:60–70. https://doi.org/10.1007/s00221-004-1985-z

    Article  PubMed  Google Scholar 

  89. Huster RJ, Messel MS, Thunberg C, Raud L (2020) The P300 as marker of inhibitory control – fact or fiction? Cortex 132:334–348. https://doi.org/10.1016/j.cortex.2020.05.021

    Article  PubMed  Google Scholar 

  90. Campanella S, Schroder E, Monnart A et al (2017) Transcranial direct current stimulation over the right frontal inferior cortex decreases neural activity needed to achieve inhibition: a double-blind erp study in a male population. Clin EEG Neurosci 48:176–188. https://doi.org/10.1177/1550059416645977

    Article  PubMed  Google Scholar 

  91. Dousset C, Ingels A, Schröder E et al (2020) Transcranial direct current stimulation combined with cognitive training induces response inhibition facilitation through distinct neural responses according to the stimulation site: a follow-up event-related potentials study. Clin EEG Neurosci 52:181–192. https://doi.org/10.1177/1550059420958967

    Article  PubMed  Google Scholar 

  92. Petit G, Cimochowska A, Kornreich C et al (2014) Neurophysiological correlates of response inhibition predict relapse in detoxified alcoholic patients: some preliminary evidence from event-related potentials. Neuropsychiatr Dis Treat 10:1025–1037. https://doi.org/10.2147/NDT.S61475

    Article  PubMed  PubMed Central  Google Scholar 

  93. López-Caneda E, Cadaveira F, Crego A et al (2012) Hyperactivation of right inferior frontal cortex in young binge drinkers during response inhibition: a follow-up study. Addiction 107:1796–1808. https://doi.org/10.1111/j.1360-0443.2012.03908.x

    Article  PubMed  Google Scholar 

  94. Dong G, Lu Q, Zhou H, Zhao X (2010) Impulse inhibition in people with Internet addiction disorder: electrophysiological evidence from a Go/NoGo study. Neurosci Lett 485:138–142. https://doi.org/10.1016/j.neulet.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  95. Zhang D, Ding H, Wang X et al (2015) Enhanced response inhibition in experienced fencers. Sci Rep 5:1–9. https://doi.org/10.1038/srep16282

    Article  CAS  Google Scholar 

  96. Doruk D, Gray Z, Bravo GL et al (2014) Effects of tDCS on executive function in Parkinson’s disease. Neurosci Lett 582:27–31. https://doi.org/10.1016/j.neulet.2014.08.043

    Article  CAS  PubMed  Google Scholar 

  97. Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37:742–753

    Article  CAS  Google Scholar 

  98. Bastani A, Jaberzadeh S (2014) Within-session repeated a-tDCS: The effects of repetition rate and inter-stimulus interval on corticospinal excitability and motor performance. Clin Neurophysiol 125:1809–1818. https://doi.org/10.1016/j.clinph.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  99. Lefaucheur JP, Antal A, Ayache SS et al (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128:56–92

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients who participated in this study and thank for the support of the Istanbul University, Teaching Staff Training Program (TSTP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Aksu.

Ethics declarations

Ethics approval

This study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Consent to participate

A written informed consent was obtained from all subjects before the inclusion in the study.

Consent for publication

All authors have approved the version to be published.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 693 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksu, S., Uslu, A., İşçen, P. et al. Does transcranial direct current stimulation enhance cognitive performance in Parkinson’s disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study. Neurol Sci 43, 4029–4044 (2022). https://doi.org/10.1007/s10072-022-06020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06020-z

Keywords

Navigation