Skip to main content

Advertisement

Log in

The role of efferocytosis in neuro-degenerative diseases

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Efferocytosis has a critical role in maintaining tissues and organs’ homeostasis by removing apoptotic cells. It is essential for human health, and disturbances in efferocytosis may result indifferent illnesses. In case of inadequate clearance of the dead cells, the content in the cells would be released. In fact, it induces some damages to the tissue and leads to the prolonged inflammation, so unsuitable phagocytosis of the apoptotic cells is involved in occurrence as well as expansion of numerous human chronic inflammatory diseases. Studies have shown age dependence of the neuro-degenerative diseases, which are largely due to the neuro-inflammation and the loss of neurons and thus cause the brain’s functional disorders. Efferocytosis is coupled to anti-inflammatory responses that contribute to the elimination of the dying neurons in neuro-degenerative diseases, so its disruption may make a risk factor in numerous human chronic inflammatory diseases such as multiple sclerosis, Alzheimer’s disease, glioblastoma, and Rett syndrome. This study is a review of the efferocytosis molecular pathways and their role in neuro-degenerative diseases in order to discover a new treatment option to cure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

HD:

Huntington’s disease

ALS:

Amyotrophic lateral sclerosis

CNS:

Central nervous system

UTP:

Uridine tri-phosphate

ATP:

Adenosine tri-phosphate

S1P:

Sphingosine-1-phosphate

LPC:

Lyso-phosphatidyl-choline

CX3CL1:

CX3C-chemokine ligand 1

PANX1:

Panexin channels

P2Y2:

Purinoreceptor-2

MFGE8:

Milk fat globule-eGF factor 8

SPHK1:

Sphingosine kinase 1

S1P-R1-5:

Sphingosine-1-phosphate (S1P) senses by numerous G-protein-coupled receptors

ABCA1:

ATP-binding cassette transporter A1

G2A:

G2 accumulation

PtdSer:

PhosphatidylSerine

ATP11C:

ATPase phospholipid transporting 11C

XKR8:

XK-related protein 8

RAGE:

Receptor for advanced glycation endproducts

BAI1:

Brain-specific angiogenesis inhibitor 1

TIM1:

T-cell immunoglobulin mucin receptor 1

MBL:

Mannose-binding lectin

ICAM3:

Inter-cellular adhesion molecule 3

ROS:

Reactive oxygen species

NFT:

Neuro-fibrillary tangles

APP:

Amyloid precursor protein

EC:

Entorhinal cortex

SNpc:

Substantia nigra pars compacta

α-SYN:

α-Synuclein

WAVE2:

Wiskott-Aldrich syndrome protein-family verproline 2

HTT:

huntingtin

GDNF:

Glial cell-derived neurotrophic factor

BDNF:

Brain-derived neurotrophic factor

NGF:

Nerve growth factor

COX-2:

Cyclooxygenase-2

TREM2:

Triggering receptor expressed in myeloid cells 2

MECP2:

MECP2 (methyl CpG-binding protein 2

References

  1. Agrawal M (2020) Chapter 26 - Molecular basis of chronic neurodegeneration. In: Kumar D (ed) Clinical molecular medicine. Academic Press, pp 447–60

    Chapter  Google Scholar 

  2. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471

    Article  PubMed  Google Scholar 

  3. Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16(9):907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Henson PM (2017) Cell Removal: efferocytosis. Annu Rev Cell Dev Biol 33:127–144

    Article  CAS  PubMed  Google Scholar 

  5. Baidya F, Bohra M, Datta A, Sarmah D, Shah B, Jagtap P et al (2021) Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology 162(2):160–178

    Article  CAS  PubMed  Google Scholar 

  6. Song WM, Colonna M (2018) The microglial response to neurodegenerative disease. Adv Immunol 139:1–50

    Article  CAS  PubMed  Google Scholar 

  7. Parnaik R, Raff M, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10(14):857

    Article  CAS  PubMed  Google Scholar 

  8. Szondy Z, Garabuczi E, Joós G, Tsay GJ, Sarang Z (2014) Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol. 5:354

    Article  PubMed  PubMed Central  Google Scholar 

  9. Durães F, Pinto M, Sousa E (2018) Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals 11(2):44

    Article  PubMed Central  Google Scholar 

  10. Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu H, Hardy J, Duff KE (2018) Selective vulnerability in neurodegenerative diseases. Nat Neurosci 21(10):1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinez-Vicente M (ed) (2015)Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation.Semin Cell Dev Biol 40:115–126

  13. Buss RR, Gould TW, Ma J, Vinsant S, Prevette D, Winseck A et al (2006) Neuromuscular development in the absence of programmed cell death: phenotypic alteration of motoneurons and muscle. J Neurosci 26(52):13413–13427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE et al (2010) Annexin A1: A central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol. 185(10):6317–28

    Article  CAS  PubMed  Google Scholar 

  15. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Henson P, Bratton D, Fadok V (2001) Apoptotic cell removal. Curr Biol 11(19):R795-805

    Article  CAS  PubMed  Google Scholar 

  17. Ravichandran KS (2010) Find me and eat me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 207(9):1807–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdolmaleki F, Farahani N, Hayat SMG, Pirro M, Bianconi V, Barreto GE et al (2018) The role of efferocytosis in autoimmune diseases. Front Immunol 20(9):1645

    Article  Google Scholar 

  19. Voll R, Herrmann M, Roth E, Stach C, Kalden J, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351

    Article  CAS  PubMed  Google Scholar 

  20. Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5(1):a008748

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lauber K, Bohn E, Kröber SM, Xiao Y-j, Blumenthal SG, Lindemann RK et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 113(6):717–30

    Article  CAS  PubMed  Google Scholar 

  22. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER et al (2010) Pannexin 1 channels mediate ‘find–me’signal release and membrane permeability during apoptosis. Nature 467(7317):863–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF et al (2009) Nucleotides released by apoptotic cells act as a find me signal for phagocytic clearance. Nature 461(7261):282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qu Y, Misaghi S, Newton K, Gilmour L, Louie S, Cupp J et al (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol. 186(11):6553–61

    Article  CAS  PubMed  Google Scholar 

  25. Pascual O, Achour SB, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109(4):E197

    Article  CAS  PubMed  Google Scholar 

  26. Truman L, Ford C, Pasikowska M, Pound J, Wilkinson S, Dumitriu I et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026

    Article  CAS  PubMed  Google Scholar 

  27. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R et al (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J 22(8):2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R et al (2016) Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 44(2):287

    Article  CAS  PubMed  Google Scholar 

  29. Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5(7):560–570

    Article  CAS  PubMed  Google Scholar 

  30. Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, Halama A et al (2012) Release of lysophospholipid’find me’signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 45(8):568

    Article  CAS  PubMed  Google Scholar 

  31. Peter C, Waibel M, Radu C, Yang L, Witte O, Schulze-Osthoff K et al (2008) Migration to apoptotic" find me" signals is mediated via the phagocyte receptor G2A. J Biol Chem 283(9):5296

    Article  CAS  PubMed  Google Scholar 

  32. Fadok V, Bratton D, Frasch S, Warner M, Henson P (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5(7):551

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki J, Denning D, Imanishi E, Horvitz H, Nagata S (2013) Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science (New York, NY) 341(6144):403

    Article  CAS  Google Scholar 

  34. Yoon M, Park S, Won H, Na D, Lee B (2000) Solution structure and membrane-binding property of the N-terminal tail domain of human annexin I. FEBS Lett 484(3):241

    Article  CAS  PubMed  Google Scholar 

  35. Thornley TB, Fang Z, Balasubramanian S, Larocca RA, Gong W, Gupta S et al (2014) Fragile TIM-4–expressing tissue resident macrophages are migratory and immunoregulatory. J Clin Investig 124(8):3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gardai S, McPhillips K, Frasch S, Janssen W, Starefeldt A, Murphy-Ullrich J et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321

    Article  CAS  PubMed  Google Scholar 

  37. Ezekowitz R, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172(6):1785–1794

    Article  CAS  PubMed  Google Scholar 

  38. Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343(6254):170

    Article  CAS  PubMed  Google Scholar 

  39. Gregory C, Devitt A, Moffatt O (1998) Roles of ICAM-3 and CD14 in the recognition and phagocytosis of apoptotic cells by macrophages. Biochem Soc Trans 26(4):644

    Article  CAS  PubMed  Google Scholar 

  40. Park S-Y, Kim I-S (2017) Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med 49(5):e331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mike JK, Ferriero DM (2021) Efferocytosis mediated modulation of injury after neonatal brain hypoxia-ischemia. Cells 10(5):1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Imbert PR, Saric A, Pedram K, Bertozzi CR, Grinstein S, Freeman SA (2021) An acquired and endogenous glycocalyx forms a bidirectional" don’t eat" and" don’t eat me" barrier to phagocytosis. Curr Biol. 31(1):77-895. e5

    Article  CAS  PubMed  Google Scholar 

  43. Richards DM, Endres RG (2014) The mechanism of phagocytosis: two stages of engulfment. Biophys J 107(7):1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosales C, Uribe-Querol E (2017) Phagocytosis: a fundamental process in immunity. BioMed Res Int. 2017:9042851

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM et al (2002) Regulation of Rac1 activation by the low density lipoprotein receptor–related protein. J Cell Biol 159(6):1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park D, Tosello-Trampont A, Elliott M, Lu M, Haney L, Ma Z et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Subramanian M, Yurdagul A Jr, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J et al (2017) Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171(2):331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45

    Article  PubMed  PubMed Central  Google Scholar 

  49. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG et al (2018) Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 21(3):329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown G, Neher J (2012) Eaten alive! Cell death by primary phagocytosis:’phagoptosis’. Trends Biochem Sci 37(8):325

    Article  CAS  PubMed  Google Scholar 

  52. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boada-Romero E, Martinez J, Heckmann B, Green D (2020) The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol. 21(7):398–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Szondy Z, Sarang Z, Kiss B, Garabuczi É, Köröskényi K (2017) Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front Immunol 8:909

  55. Kuenkele S, Beyer T, Voll R, Kalden J, Herrmann M (2003) Impaired clearance of apoptotic cells in systemic lupus erythematosus: challenge of T and B cell tolerance. Curr Rheumatol Rep 5(3):175

    Article  PubMed  Google Scholar 

  56. Franz S, Gaipl U, Munoz L, Sheriff A, Beer A, Kalden J et al (2006) Apoptosis and autoimmunity: when apoptotic cells break their silence. Curr Rheumatol Rep 8(4):245

    Article  CAS  PubMed  Google Scholar 

  57. Colonna M, Butovsky O (2017) Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol 35:441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haukedal H, Freude K (2019) Implications of microglia in amyotrophic lateral sclerosis and frontotemporal dementia. J Mol Biol 431(9):1818–1829

    Article  CAS  PubMed  Google Scholar 

  59. Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P et al (2014) The TREM2 variant p. R47H is a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71(4):449

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo J-R et al (2011) Progranulin Is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol 178(1):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A et al (2017) Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol Genet 26(4):686–701

    CAS  PubMed  Google Scholar 

  62. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127

    Article  CAS  PubMed  Google Scholar 

  64. Cieślak M, Wojtczak A (2018) Role of purinergic receptors in the Alzheimer’s disease. Purinergic Signal 14(4):331–344

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guo Y, Wei X, Yan H, Qin Y, Yan S, Liu J et al (2019) TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s disease models. FASEB J 33(11):12164–12174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Feng S, Nie K, Li Y, Gao Y, Gan R et al (2018) TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem Biophys Res Commun 499(4):797–802

    Article  CAS  PubMed  Google Scholar 

  67. Kim KS, Marcogliese PC, Yang J, Callaghan SM, Resende V, Abdel-Messih E et al (2018) Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proc Natl Acad Sci USA 115(22):E5164–E5173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Träger U, Andre R, Magnusson-Lind A, Miller JRC, Connolly C, Weiss A et al (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388–398

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hu J, Xiao Q, Dong M, Guo D, Wu X, Wang B (2020) Glioblastoma Immunotherapy targeting the innate immune checkpoint CD47-SIRPα axis. Front Immun. 11:593219

    Article  CAS  Google Scholar 

  71. Schafer DP, Heller CT, Gunner G, Heller M, Gordon C, Hammond T et al (2016) Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. Elife. 5:e15224

    Article  PubMed  PubMed Central  Google Scholar 

  72. Goedert M, Spillantini M (2006) A century of Alzheimer’s disease. Science (New York, NY) 314(5800):777

    Article  CAS  Google Scholar 

  73. Morrison B, Hof P, Morrison J (1998) Determinants of neuronal vulnerability in neurodegenerative diseases. Ann Neurol 44(3 Suppl 1):S32

    Article  CAS  PubMed  Google Scholar 

  74. Suescun J, Chandra S, Schiess MC (2019) The role of neuroinflammation in neurodegenerative disorders. Translational Inflammation. Elsevier, p 241–67

  75. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 23(7):2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Streit WJ, Khoshbouei H, Bechmann I (2021) The role of microglia in sporadic Alzheimer’s disease. J Alzheimers Dis 79:961–968

    Article  CAS  PubMed  Google Scholar 

  78. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ et al (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174(4):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pohl A, Devaux PF, Herrmann A (2005) Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochem Biophys Acta 1733(1):29–52

    CAS  PubMed  Google Scholar 

  81. Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem 290(40):24152–24165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW et al (2014) Loss of P2Y2 nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer’s disease. Mol Neurobiol 49(2):1031–1042

    Article  CAS  PubMed  Google Scholar 

  83. Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido T, Hsiao K et al (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152(1):307

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith J, Das A, Ray S, Banik N (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87(1):10

    Article  CAS  PubMed  Google Scholar 

  85. Morales I, Farías G, Maccioni R (2010) Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. NeuroImmunoModulation 17(3):202

    Article  CAS  PubMed  Google Scholar 

  86. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368

    Article  CAS  PubMed  Google Scholar 

  87. Brichta L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat 8:152

  88. Chauhan A, Jeans AF (2015) Is Parkinson’s disease truly a prion-like disorder? An Appraisal of Current Evidence. Neurol Res Int. 2015:1–8

    Article  Google Scholar 

  89. Depboylu C, Stricker S, Ghobril J-P, Oertel WH, Priller J, Höglinger GU (2012) Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Exp Neurol 238(2):183–191

    Article  CAS  PubMed  Google Scholar 

  90. Ingelsson M (2016) Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and Other Lewy Body disorders. Front Neurosci 10:408

  91. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34

    Article  CAS  PubMed  Google Scholar 

  92. DiFiglia M (2020) An early start to Huntington’s disease. Science 369(6505):771

    Article  CAS  PubMed  Google Scholar 

  93. Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R et al (2020) Huntington’s disease alters human neurodevelopment. Science 369(6505):787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ransohoff R, Perry V (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119

    Article  CAS  PubMed  Google Scholar 

  95. Morigaki R, Goto S (2017) Striatal vulnerability in Huntington’s disease: neuroprotection versus neurotoxicity. Brain Sci 7(6):63

  96. Savage JC, St-Pierre M-K, Carrier M, El Hajj H, Novak SW, Sanchez MG et al (2020) Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington’s disease pathology. J Neuroinflamm 17(1):1–18

  97. Crotti A, Benner C, Kerman B, Gosselin D, Lagier-Tourenne C, Zuccato C et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17(4):513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S et al (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics. 11(3):679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Di Pardo A, Alberti S, Maglione V, Amico E, Cortes EP, Elifani F et al (2013) Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease. Mol Brain 6:55

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chang K, Wu Y, Chen Y, Chen C (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121

    Article  CAS  PubMed  Google Scholar 

  101. Kwan W, Träger U, Davalos D, Chou A, Bouchard J, Andre R et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Investig 122(12):4737–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. The Lancet 377(9769):942–955

    Article  CAS  Google Scholar 

  103. Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17(1):17–23

    Article  CAS  PubMed  Google Scholar 

  104. Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35

    Article  CAS  PubMed  Google Scholar 

  105. Ince P, Shaw P, Slade J, Jones C, Hudgson P (1996) Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunocytochemical changes. Acta Neuropathol 92(4):395

    Article  CAS  PubMed  Google Scholar 

  106. Sanagi T, Yuasa S, Nakamura Y, Suzuki E, Aoki M, Warita H et al (2010) Appearance of phagocytic microglia adjacent to motoneurons in spinal cord tissue from a presymptomatic transgenic rat model of amyotrophic lateral sclerosis. J Neurosci Res 88(12):2736

    CAS  PubMed  Google Scholar 

  107. Allen S, Watson J, Shoemark D, Barua N, Patel N (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155

    Article  CAS  PubMed  Google Scholar 

  108. Fiala M, Chattopadhay M, La Cava A, Tse E, Liu G, Lourenco E et al (2010) IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation 7:76

    Article  PubMed  PubMed Central  Google Scholar 

  109. Henkel J, Beers D, Zhao W, Appel S (2009) Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 4(4):389

    Article  PubMed  Google Scholar 

  110. Takeuchi S, Fujiwara N, Ido A, Oono M, Takeuchi Y, Tateno M et al (2010) Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 69(10):1044

    Article  CAS  PubMed  Google Scholar 

  111. Ciric B, El-behi M, Cabrera R, Zhang G, Rostami A (2009) IL-23 drives pathogenic IL-17-producing CD8+ T cells. J Immunol 182(9):5296

    Article  CAS  PubMed  Google Scholar 

  112. Zhang L, Liu X-g, Liu D-q, Yu X-l, Zhang L-x, Zhu J et al (2020) A conditionally releasable “do not eat me” CD47 signal facilitates microglia-targeted drug delivery for the treatment of Alzheimer’s disease. Adv Funct Mater. 30(24):1910691

    Article  CAS  Google Scholar 

  113. Zhang M, Qian C, Zheng Z-G, Qian F, Wang Y, Thu PM et al (2018) Jujuboside A promotes Aβ clearance and ameliorates cognitive deficiency in Alzheimer’s disease through activating Axl/HSP90/PPARγ pathway. Theranostics 8(15):4262–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237(1):147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Träger U, Andre R, Magnusson-Lind A, Miller JR, Connolly C, Weiss A et al (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Gheibihayat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, F., Taghizadeh, E., Navashenaq, J.G. et al. The role of efferocytosis in neuro-degenerative diseases. Neurol Sci 43, 1593–1603 (2022). https://doi.org/10.1007/s10072-021-05835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05835-6

Keywords

Navigation