Skip to main content
Log in

Activation of NMDA receptor of glutamate influences MMP-2 activity and proliferation of glioma cells

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is the most common malignant glioma, which has high proliferative rate and an extremely invasive phenotype. Major limitations in the effective treatment of malignant gliomas are the proliferation and infiltration into the surrounding brain tissue. Although studies have shown that various stimuli promote glioma cell proliferation and invasion, the underlying mechanisms remain largely unknown. Glioma cells secrete significant amount of glutamate into surrounding tissue and intracellular signaling is thought to be initiated upon glutamate-induced modulation of the ion channels in GBM cells. The objective of the study was to investigate the effect of activation of NMDA (N-methyl-d-aspartate) receptors of glutamate on gelatinase subfamily MMPs and on proliferation of glioma cells. U251MG and U87MG cell lines were maintained in Dulbecco’s Modified Eagle’s Medium. Proliferation assay was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole (MTT) assay. Matrix metalloproteinase (MMP)-2 and MMP-9 activity was investigated by gelatin zymography assay. We demonstrate that activated NMDA receptors (NMDAR) increased the activity of MMP-2 only in U251MG glioma cells at concentrations of 100 and 200 μM and increased the proliferation of both U87MG and U251MG glioma cells at concentrations of 50, 100, 150 and 200 μM. Inhibition of NMDAR using MK-801, a non-competitive antagonist of the NMDAR, significantly inhibited the effect of activation of NMDAR on MMP-2 activity and on proliferation. We conclude that NMDA receptor activation has role in activity of MMP-2 and proliferation of glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Belda-Iniesta C, de Castro Carpeno J, Casado Saenz E, Cejas Guerrero P, Perona R, Gonzalez Baron M (2006) Molecular biology of malignant gliomas. Clin Transl Oncol 8(9):635–641

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  3. Lefranc F, Sadeghi N, Camby I, Metens T, Dewitte O, Kiss R (2006) Present and potential future issues in glioblastoma treatment. Expert Rev Anticancer Ther 6(5):719–732. doi:10.1586/14737140.6.5.719

    Article  CAS  PubMed  Google Scholar 

  4. Blough M, Beauchamp D, Westgate M, Kelly J, Cairncross J (2011) Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma. J Neurooncol 102(1):1–7. doi:10.1007/s11060-010-0283-9

    Article  CAS  PubMed  Google Scholar 

  5. Anker L, Ohgaki H, Ludeke B, Herrmann H, Kleihues P, Westphal M (1993) p53 protein accumulation and gene mutations in human glioma cell lines. Int J Cancer 55(6):982–987. doi:10.1002/ijc.2910550618

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Manzano C, Fueyo J, Kyritsis A, McDonnell T, Steck P, Levin V, Yung W (1997) Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis. J Natl Cancer Inst 89(14):1036–1044. doi:10.1093/jnci/89.14.1036

    Article  CAS  PubMed  Google Scholar 

  7. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59(17):4383–4391

    CAS  PubMed  Google Scholar 

  8. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8(9):971–978. doi:10.1038/nm746

    Article  CAS  PubMed  Google Scholar 

  9. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7(9):1010–1015. doi:10.1038/nm0901-1010

    Article  CAS  PubMed  Google Scholar 

  10. Simeone T, Sanchez R, Rho J (2004) Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol 19(5):343

    Article  PubMed  Google Scholar 

  11. van Vuurden DG, Yazdani M, Bosma I, Broekhuizen AJ, Postma TJ, Heimans JJ, van der Valk P, Aronica E, Tannous BA, Wurdinger T, Kaspers GJ, Cloos J (2009) Attenuated AMPA receptor expression allows glioblastoma cell survival in glutamate-rich environment. PLoS One 4(6):e5953. doi:10.1371/journal.pone.0005953

    Article  PubMed Central  PubMed  Google Scholar 

  12. VanMeter T, Rooprai H, Kibble M, Fillmore H, Broaddus W, Pilkington G (2001) The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol 53(2):213–235. doi:10.1023/A:1012280925031

    Article  CAS  PubMed  Google Scholar 

  13. Sarkar S, Yong V (2009) Inflammatory cytokine modulation of matrix metalloproteinase expression and invasiveness of glioma cells in a 3-dimensional collagen matrix. J Neurooncol 91(2):157–164. doi:10.1007/s11060-008-9695-1

    Article  CAS  PubMed  Google Scholar 

  14. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501. doi:10.1038/nrc1121

    Article  CAS  PubMed  Google Scholar 

  15. Park MH, Ahn BH, Hong YK, Min do S (2009) Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis 30(2):356–365. doi:10.1093/carcin/bgn287

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida D, Hoshino S, Shimura T, Takahashi H, Teramoto A (2000) Drug-induced apoptosis by anti-microtubule agent, estramustine phosphate on human malignant glioma cell line, U87MG; in vitro study. J Neurooncol 47(2):133–140. doi:10.1023/A:1006393705560

    Article  CAS  PubMed  Google Scholar 

  17. Jan H-J, Lee C–C, Shih Y-L, Hueng D-Y, Ma H-I, Lai J-H, Wei H-W, Lee H-M (2010) Osteopontin regulates human glioma cell invasiveness and tumor growth in mice. Neuro-oncology 12(1):58–70. doi:10.1093/neuonc/nop013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98(11):6372–6377. doi:10.1073/pnas.091113598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Liu H-N, Giasson B, Mushynski W, Almazan G (2002) AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK, calpain and caspase 3. J Neurochem 82(2):398–409

    Article  CAS  PubMed  Google Scholar 

  20. Savaskan N, Seufert S, Hauke J, Tränkle C, Eyüpoglu I, Hahnen E (2011) Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas. Oncogene 30(1):43–53. doi:10.1038/onc.2010.391

    Article  CAS  PubMed  Google Scholar 

  21. de Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59(8):1181–1189. doi:10.1002/glia.21113

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, Nakazato Y, Ozawa S (2007) Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci 27(30):7987–8001. doi:10.1523/JNEUROSCI.2180-07.2007

    Article  CAS  PubMed  Google Scholar 

  23. Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke K, Turski L, Ikonomidou C (2009) Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 132(4):435–445. doi:10.1007/s00418-009-0613-1

    Article  CAS  PubMed  Google Scholar 

  24. Schipke C, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J 15(7):1270–1272. doi:10.1096/fj.00-0439fje

    CAS  PubMed  Google Scholar 

  25. Krebs C, Fernandes HB, Sheldon C, Raymond LA, Baimbridge KG (2003) Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci 23(8):3364–3372

    CAS  PubMed  Google Scholar 

  26. Muller P, Vousden K, Norman J (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192(2):209–218. doi:10.1083/jcb.201009059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Miyake J, Benadiba M, Colquhoun A (2009) Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis 8:8. doi:10.1186/1476-511X-8-8

    Article  PubMed Central  PubMed  Google Scholar 

  28. Delassus G, Cho H, Hoang S, Eliceiri G (2010) Many new down- and up-regulatory signaling pathways, from known cancer progression suppressors to matrix metalloproteinases, differ widely in cells of various cancers. J Cell Physiol 224(2):549–558. doi:10.1002/jcp.22157

    Article  CAS  PubMed  Google Scholar 

  29. Lenz G, Avruch J (2005) Glutamatergic regulation of the p70S6 kinase in primary mouse neurons. J Biol Chem 280(46):38121–38124. doi:10.1074/jbc.C500363200

    Article  CAS  PubMed  Google Scholar 

  30. Jang HS, Lal S, Greenwood JA (2010) Calpain 2 is required for glioblastoma cell invasion: regulation of matrix metalloproteinase 2. Neurochem Res 35(11):1796–1804. doi:10.1007/s11064-010-0246-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta 1755(1):37–69. doi:10.1016/j.bbcan.2005.03.001

    PubMed  Google Scholar 

  32. Zhou X, Ma L, Li J, Gu J, Shi Q, Yu R (2012) Effects of SEMA3G on migration and invasion of glioma cells. Oncol Rep 28(1):269–275. doi:10.3892/or.2012.1796

    CAS  PubMed  Google Scholar 

  33. Kolli-Bouhafs K, Boukhari A, Abusnina A, Velot E, Gies JP, Lugnier C, Ronde P (2012) Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest New Drugs 30(6):2121–2131. doi:10.1007/s10637-011-9777-3

    Article  CAS  PubMed  Google Scholar 

  34. He Z, Cen D, Luo X, Li D, Li P, Liang L, Meng Z (2013) Downregulation of miR-383 promotes glioma cell invasion by targeting insulin-like growth factor 1 receptor. Med Oncol 30(2):557. doi:10.1007/s12032-013-0557-0

    Article  PubMed  Google Scholar 

  35. Mao F, Wang B, Xiao Q, Xi G, Sun W, Zhang H, Ye F, Wan F, Guo D, Lei T, Chen X (2013) A role for LRIG1 in the regulation of malignant glioma aggressiveness. Int J Oncol 42(3):1081–1087. doi:10.3892/ijo.2013.1776

    CAS  PubMed  Google Scholar 

  36. Cui D, Chen X, Yin J, Wang W, Lou M, Gu S (2012) Aberrant activation of Hedgehog/Gli1 pathway on angiogenesis in gliomas. Neurol India 60(6):589–596. doi:10.4103/0028-3886.105192

    Article  PubMed  Google Scholar 

  37. Gu J, Zhang C, Chen R, Pan J, Wang Y, Ming M, Gui W, Wang D (2009) Clinical implications and prognostic value of EMMPRIN/CD147 and MMP2 expression in pediatric gliomas. Eur J Pediatr 168(6):705–710. doi:10.1007/s00431-008-0828-5

    Article  CAS  PubMed  Google Scholar 

  38. Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD, Dinh DH, Rao JS (2011) MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 6(6):e20614. doi:10.1371/journal.pone.0020614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dingledine R, Borges K, Bowie D, Traynelis S (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  40. Nong Y, Huang Y-Q, Ju W, Kalia L, Ahmadian G, Wang Y, Salter M (2003) Glycine binding primes NMDA receptor internalization. Nature 422(6929):302–307. doi:10.1038/nature01497

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grant (No.BT/PR3431/MED/30/648/2011) to Nandakumar Dalavaikodihalli Nanjaiah from Department of Biotechnology (DBT), New Delhi, India. Palaniswamy R gratefully acknowledges the junior research fellowship from Council of Scientific and Industrial Research (CSIR), India.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandakumar Dalavaikodihalli Nanjaiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramaswamy, P., Aditi Devi, N., Hurmath Fathima, K. et al. Activation of NMDA receptor of glutamate influences MMP-2 activity and proliferation of glioma cells. Neurol Sci 35, 823–829 (2014). https://doi.org/10.1007/s10072-013-1604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1604-5

Keywords

Navigation