Skip to main content

Advertisement

Log in

Calpain 2 is Required for Glioblastoma Cell Invasion: Regulation of Matrix Metalloproteinase 2

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Invasion of glioblastoma cells significantly reduces the effectiveness of current treatments, highlighting the importance of understanding dispersal mechanisms and characteristics of the invasive population. Induction of calcium fluxes into glioblastoma cells by autocrine glutamate is critical for invasion. However, the target(s) by which calcium acts to stimulate the dispersal of glioblastoma cells is not clear. In this study, we tested the hypothesis that the calcium-activated protease calpain 2 is required for glioblastoma cell invasion. Knockdown of calpain 2 expression using shRNA or chemical inhibition of calpain activity reduced glioblastoma cell invasion by 90%. Interestingly, decreased expression of calpain 2 did not influence morphology or migration, suggesting regulation of invasion specific mechanisms. Consistent with this idea, 39% less extracellular MMP2 was measured from knockdown cells identifying one mechanism by which calpain 2 mediates glioblastoma cell invasion. This is the first report demonstrating that calpain 2 is required for glioblastoma cell invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AMPA:

α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

CL:

Collagen type IV

DMEM:

Dulbecco’s modified Eagle media

FBS:

Fetal bovine serum

FN:

Fibronectin

LN:

Laminin

References

  1. Bhatt A, Kaverina I, Otey C, Huttenlocher A (2002) Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J Cell Sci 115:3415–3425

    CAS  PubMed  Google Scholar 

  2. Braun C, Engel M, Seifert M, Theisinger B, Seitz G, Zang KD, Welter C (1999) Expression of calpain I messenger RNA in human renal cell carcinoma: correlation with lymph node metastasis and histological type. Int J Cancer 84:6–9

    Article  CAS  PubMed  Google Scholar 

  3. Buccione R, Caldieri G, Ayala I (2009) Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 28:137–149

    Article  PubMed  Google Scholar 

  4. Carragher NO, Fonseca BD, Frame MC (2004) Calpain activity is generally elevated during transformation but has oncogene-specific biological functions. Neoplasia 6:53–73

    CAS  PubMed  Google Scholar 

  5. CBTRUS (2005) Statistical report: primary brain tumors in the United States, 199–2002. Published by the Central Brain Tumor Registry of the United States

  6. Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A (2008) Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol 180:957–971

    Article  CAS  PubMed  Google Scholar 

  7. Dourdin N, Bhatt AK, Dutt P, Greer PA, Arthur JS, Elce JS, Huttenlocher A (2001) Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem 276:48382–48388

    CAS  PubMed  Google Scholar 

  8. Franco S, Perrin B, Huttenlocher A (2004) Isoform specific function of calpain 2 in regulating membrane protrusion. Exp Cell Res 299:179–187

    Article  CAS  PubMed  Google Scholar 

  9. Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 6:977–983

    Article  CAS  PubMed  Google Scholar 

  10. Giannone G, Ronde P, Gaire M, Haiech J, Takeda K (2002) Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells. J Biol Chem 277:26364–26371

    Article  CAS  PubMed  Google Scholar 

  11. Gimona M, Buccione R, Courtneidge SA, Linder S (2008) Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20:235–241

    Article  CAS  PubMed  Google Scholar 

  12. Glading A, Chang P, Lauffenburger DA, Wells A (2000) Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J Biol Chem 275:2390–2398

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg L, Kloog Y (2006) A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res 66:11709–11717

    Article  CAS  PubMed  Google Scholar 

  14. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    CAS  PubMed  Google Scholar 

  15. Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP, Kwiatkowski DJ, Hartwig JH (1990) Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 111:1089–1105

    Article  CAS  PubMed  Google Scholar 

  16. Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM (1999) Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146:389–403

    Article  CAS  PubMed  Google Scholar 

  17. Huber E, Vlasny D, Jeckel S, Stubenrauch F, Iftner T (2004) Gene profiling of cottontail rabbit papillomavirus-induced carcinomas identifies upregulated genes directly Involved in stroma invasion as shown by small interfering RNA-mediated gene silencing. J Virol 78:7478–7489

    Article  CAS  PubMed  Google Scholar 

  18. Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF (1997) Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272:32719–32722

    Article  CAS  PubMed  Google Scholar 

  19. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2 +)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8:971–978

    Article  CAS  PubMed  Google Scholar 

  20. Kimura Y, Koga H, Araki N, Mugita N, Fujita N, Takeshima H, Nishi T, Yamashima T, Saido TC, Yamasaki T, Moritake K, Saya H, Nakao M (1998) The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nat Med 4:915–922

    Article  CAS  PubMed  Google Scholar 

  21. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  22. Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, Litofsky NS, Ross AH, Recht LD (2001) Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 95:480–488

    Article  CAS  PubMed  Google Scholar 

  23. Lakshmikuttyamma A, Selvakumar P, Kanthan R, Kanthan SC, Sharma RK (2004) Overexpression of m-calpain in human colorectal adenocarcinomas. Cancer Epidemiol Biomarkers Prev 13:1604–1609

    CAS  PubMed  Google Scholar 

  24. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  25. Libertini SJ, Robinson BS, Dhillon NK, Glick D, George M, Dandekar S, Gregg JP, Sawai E, Mudryj M (2005) Cyclin E both regulates and is regulated by calpain 2, a protease associated with metastatic breast cancer phenotype. Cancer Res 65:10700–10708

    Article  CAS  PubMed  Google Scholar 

  26. Liu GJ, Nagarajah R, Banati RB, Bennett MR (2009) Glutamate induces directed chemotaxis of microglia. Eur J Neurosci 29:1108–1118

    Article  PubMed  Google Scholar 

  27. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67:9463–9471

    Article  CAS  PubMed  Google Scholar 

  28. Mamoune A, Luo JH, Lauffenburger DA, Wells A (2003) Calpain-2 as a target for limiting prostate cancer invasion. Cancer Res 63:4632–4640

    CAS  PubMed  Google Scholar 

  29. Nuzzi PA, Senetar MA, Huttenlocher A (2007) Asymmetric localization of Calpain 2 during neutrophil chemotaxis. Mol Biol Cell 18:795–805

    Article  CAS  PubMed  Google Scholar 

  30. Palecek SP, Huttenlocher A, Horwitz AF, Lauffenburger DA (1998) Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J Cell Sci 111:929–940

    CAS  PubMed  Google Scholar 

  31. Perrin BJ, Amann KJ, Huttenlocher A (2006) Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol Biol Cell 17:239–250

    Article  CAS  PubMed  Google Scholar 

  32. Postovit LM, Dutt P, Dourdin N, Park M, Greer PA, Graham CH, Elce JS (2002) Calpain is required for MMP-2 and u-PA expression in SV40 large T-antigen-immortalized cells. Biochem Biophys Res Commun 297:294–301

    Article  CAS  PubMed  Google Scholar 

  33. Potter DA, Tirnauer JS, Janssen R, Croall DE, Hughes CN, Fiacco KA, Mier JW, Maki M, Herman IM (1998) Calpain regulates actin remodeling during cell spreading. J Cell Biol 141:647–662

    Article  CAS  PubMed  Google Scholar 

  34. Rios-Doria J, Day KC, Kuefer R, Rashid MG, Chinnaiyan AM, Rubin MA, Day ML (2003) The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem 278:1372–1379

    Article  CAS  PubMed  Google Scholar 

  35. Rios-Doria J, Kuefer R, Ethier SP, Day ML (2004) Cleavage of beta-catenin by calpain in prostate and mammary tumor cells. Cancer Res 64:7237–7240

    Article  CAS  PubMed  Google Scholar 

  36. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  CAS  PubMed  Google Scholar 

  37. Shiba E, Kambayashi JI, Sakon M, Kawasaki T, Kobayashi T, Koyama H, Yayoi E, Takatsuka Y, Takai SI (1996) Ca2+-dependent neutral protease (Calpain) activity in breast cancer tissue and estrogen receptor status. Breast Cancer 3:13–17

    Article  PubMed  Google Scholar 

  38. Shiraha H, Glading A, Gupta K, Wells A (1999) IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. J Cell Biol 146:243–254

    CAS  PubMed  Google Scholar 

  39. Sontheimer H (2008) A role for glutamate in growth and invasion of primary brain tumors. J Neurochem 105:287–295

    Article  CAS  PubMed  Google Scholar 

  40. Sprague CR, Fraley TS, Jang HS, Lal S, Greenwood JA (2008) Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain. J Biol Chem 283(14):9217–9223

    Article  CAS  PubMed  Google Scholar 

  41. Stylli SS, Kaye AH, Lock P (2008) Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci 15:725–737

    Article  CAS  PubMed  Google Scholar 

  42. Tamura M, Gu J, Takino T, Yamada KM (1999) Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 59:442–449

    CAS  PubMed  Google Scholar 

  43. Troeberg L, Nagase H (2003) Zymography of metalloproteinases. Curr Protoc Protein Sci Suppl 33:21.15.1–21.15.12

  44. Weaver AM (2006) Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23:97–105

    Article  PubMed  Google Scholar 

  45. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to J.A.G. from the Medical Research Foundation of Oregon, the General Research Fund of Oregon State University, and GM 63711 from the National Institute of General Medical Sciences, National Institutes of Health. This publication was made possible in part by the Cell Imaging and Analysis Facility and Services Core of the Environmental Health Sciences Center at Oregon State University from grant P30 ES00210, National Institute of Environmental Health Sciences, National Institutes of Health. Special thanks to Tamara S. Fraley for expert assistance with tissue culture and microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Greenwood.

Additional information

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Oregon State University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, H.S., Lal, S. & Greenwood, J.A. Calpain 2 is Required for Glioblastoma Cell Invasion: Regulation of Matrix Metalloproteinase 2. Neurochem Res 35, 1796–1804 (2010). https://doi.org/10.1007/s11064-010-0246-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0246-8

Keywords

Navigation