Skip to main content
Log in

Anti-diabetic potential of a Sasa quelpaertensis Nakai extract in L6 skeletal muscle cells

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The anti-diabetic potential of a Sasa quelpaertensis Nakai extract (SQE) in L6 muscle cells was evaluated. The SQE stimulated glucose uptake via the AMP-activated protein kinase-activating pathway, but not via the insulinstimulating pathway. The SQE increased the expression of fatty acid translocase and peroxisome proliferator-activated receptor γ, and induced phosphorylation of acetyl-CoA carboxylase. The SQE attenuated oleic acid-induced intracellular triglyceride contents by decreasing the expression of sterol regulatory element-binding protein-1c and fatty acid synthase. These results indicate that the SQE probably has an anti-diabetic potential by enhancing glucose uptake and reducing triglyceride content in L6 skeletal muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krook A, Wallberg-Henriksson H, Zierath JR. Sending the signal: Molecular mechanisms regulating glucose uptake. Med. Sci. Sports Exerc. 36: 1212–1217 (2004)

    Article  CAS  Google Scholar 

  2. Chang L, Chiang SH, Saltiel AR. Insulin signaling and the regulation of glucose transport. Mol. Med. 10: 65–71 (2004)

    CAS  Google Scholar 

  3. Aschenbach WG, Hirshman MF, Fujii N, Sakamoto K, Howlett KF, Goodyear LJ. Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes 51: 567–573 (2002)

    Article  CAS  Google Scholar 

  4. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: Possible roles in type 2 diabetes. Am. J. Physiol. 277: 1–10 (1999)

    Google Scholar 

  5. Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol. Rev. 86: 205–243 (2006)

    Article  CAS  Google Scholar 

  6. Li WL, Zheng HC, Bukuru J, Kimpe ND. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol. 92: 1–21 (2004)

    Article  CAS  Google Scholar 

  7. Khan V, Najmi AK, Akhtar M, Aqil M, Mujeeb M, Pillai KK. A pharmacological appraisal of medicinal plants with antidiabetic potential. J. Pharm. Bioallied Sci. 4: 27–42 (2012)

    Article  CAS  Google Scholar 

  8. Hwang JH, Choi SY, Jang MK, Jin YJ, Kang SI, Park JG, Chung WS, Kim SJ. Anti-inflammatory effect of hot water extract from Sasa quelpaertensis leaves. Food Sci. Biotechnol. 16: 728–733 (2007)

    Google Scholar 

  9. Ren M, Reilly RT, Sacchi N. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis. Anticancer Res. 24: 2879–2884 (2004)

    Google Scholar 

  10. Yang JH, Lim HS, Her YR. Sasa borealis leaves extract improve insulin resistance by modulating inflammatory cytokine secretion in high fat diet-induced obese C57/BL6J mice. Nutr. Res. Pract. 4: 99–105 (2010)

    Article  Google Scholar 

  11. Kang SI, Shin HS, Kim HM, Hong YS, Yoon SA, Kang SW, Kim JH, Ko HC, Kim SJ. Anti-obesity properties of a Sasa quelpaertensis extract in high-fat diet-induced obese mice. Biosci. Biotech. Bioch. 76: 755–761 (2012)

    Article  CAS  Google Scholar 

  12. Yoon SA, Kang SI, Shin HS, Kang SW, Kim JH, Ko HC, Kim SJ. p-Coumaric acid modulates glucose and lipid metabolism via AMPactivated protein kinase in L6 skeletal muscle cells. Biochem. Bioph. Res. Co. 432: 553–557 (2013)

    Article  CAS  Google Scholar 

  13. Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Bioph. Meth. 64: 207–215 (2005)

    Article  CAS  Google Scholar 

  14. Frayn KN, Arner P, Yki-Järvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 42: 89–103 (2006)

    Article  CAS  Google Scholar 

  15. Koonen DP, Glatz JF, Bonen A, Luiken JJ. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim. Biophys. Acta 1736: 163–180 (2005)

    Article  CAS  Google Scholar 

  16. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. P. Natl. Acad. Sci. USA 104: 12017–12022 (2007)

    Article  Google Scholar 

  17. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167–1174 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, SA., Kang, SI., Shin, HS. et al. Anti-diabetic potential of a Sasa quelpaertensis Nakai extract in L6 skeletal muscle cells. Food Sci Biotechnol 23, 1335–1339 (2014). https://doi.org/10.1007/s10068-014-0183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0183-4

Keywords

Navigation