Skip to main content
Log in

Chlorogenic acid promotes osteoblastogenesis in human adipose tissue-derived mesenchymal stem cells

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and has various biological properties such as antimicrobial and antioxidant activities. Although the biophysiological effects of CGA are well studied, its effect on stem cell differentiation has not been observed until recently. In this study, it was demonstrated that CGA promotes osteogenesis in human adipose tissue-derived mesenchymal stem cells (hAMSCs), as indicated by increased mineralization. The mRNA levels of alkaline phosphatase and runt-related transcription factor 2 increased significantly following treatment with 30 μM CGA. These results suggest a novel effect of CGA on osteogenic differentiation in hAMSCs and the possibility that CGA might affect the differentiation of other types of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rotter N, Haisch A, Bucheler M. Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur. Arch. Oto-Rhino.-L. 262: 539–545 (2005)

    Article  Google Scholar 

  2. Urist MR Bone: Formation by autoinduction. Science 150: 893–899 (1965)

  3. Zou D, Han W, You S, Ye D, Wang L, Wang S, Zhao J, Zhang W, Jiang X, Zhang X, Huang Y. In vitro study of enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem cells. Cell Proliferat. 44: 234–243 (2011)

    Article  CAS  Google Scholar 

  4. Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J. Cell. Biochem. 106: 984–991 (2009)

    Article  CAS  Google Scholar 

  5. Le Blanc K, Pittenger M. Mesenchymal stem cells: Progress toward promise. Cytotherapy 7: 36–45 (2005)

    Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147 (1999)

    Article  CAS  Google Scholar 

  7. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest. 113: 1701–1710 (2004)

    CAS  Google Scholar 

  8. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309: 314–317 (2005)

    Article  CAS  Google Scholar 

  9. Pan RL, Chen Y, Xiang LX, Shao JZ, Dong XJ, Zhang GR. Fetal liver-conditioned medium induces hepatic specification from mouse bone marrow mesenchymal stromal cells: A novel strategy for hepatic trans differentiation. Cytotherapy 10: 668–675 (2008)

    Article  CAS  Google Scholar 

  10. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Hizuno M, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13: 279–295 (2002)

    Article  Google Scholar 

  11. Rodriguez AM, Elabd C, Amri EZ, Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie 87: 125–128 (2005)

    Article  CAS  Google Scholar 

  12. Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr. Top Dev. Biol. 58: 137–160 (2003)

    Article  Google Scholar 

  13. Kono Y, Kashine S, Yoneyama T, Sakamoto Y, Matsui Y, Shibata H. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotech. Bioch. 62: 22–27 (1998)

    Article  CAS  Google Scholar 

  14. Almeida AA, Farah A, Silva DA, Nunan EA, Glóoria MB. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agr. Food Chem. 54: 8738–8743 (2006)

    Article  CAS  Google Scholar 

  15. Jin XH, Ohgami K, Shiratori K, Suzuki Y, Koyama Y, Yoshida K, Ilieva I, Tanaka T, Onoe K, Ohno S. Effects of blue honeysuckle (Lonicera caerulea L.) extract on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp. Eye Res. 82: 860–867 (2006)

    Article  CAS  Google Scholar 

  16. Sheu MJ, Chou PY, Cheng HC, Wu CH, Huang GJ, Wang BS, Chen JS, Chien YC, Huang MH. Analgesic and anti-inflammatory activities of a water extract of Trachelospermum jasminoides (Apocynaceae). J. Ethnopharmacol. 126: 332–338 (2009)

    Article  Google Scholar 

  17. Dos Santos MD, Almeida MC, Lopes NP, de Souza GE. Evaluation of the anti-inflammatory, analgesic, and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 29: 2236–2240 (2006)

    Article  Google Scholar 

  18. Lim S, Jang HJ, Kim JK, Kim JM, Park EH, Yang JH, Kim YH, Yea K, Ryu SH, Suh PG. Ochratoxin A inhibits adipogenesis through the extracellular signal-related kinases-peroxisome proliferatoractivated receptor-γ pathway in human adipose tissue-derived mesenchymal stem cells. Stem Cells Dev. 20: 415–426 (2011)

    Article  CAS  Google Scholar 

  19. Kim YS, Kim NH, Lee YM, Kim JS. Preventive effect of chlorogenic acid on lens opacity and cytotoxicity in human lens epithelial cells. Biol. Pharm. Bull. 34: 925–928 (2011)

    Article  CAS  Google Scholar 

  20. Kim YJ, Bae YC, Suh KT, Jung JS. Quercetin, a flavonoid, inhibits proliferation and increases osteogenic differentiation in human adipose stromal cells. Biochem. Pharmacol. 72: 1268–1278 (2006)

    Article  CAS  Google Scholar 

  21. Walsh S, Jefferiss C, Stewart K, Jordan GR, Screen J, Beresford JN. Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: Regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1–4. Bone 27: 185–195 (2000)

    Article  CAS  Google Scholar 

  22. Komori T. Regulation of bone development and extracellular matrix protein genes by RunX2. Cell Tissue Res. 339: 189–195 (2010)

    Article  CAS  Google Scholar 

  23. Li X, Cui Q, Kao C, Wang GJ, Balian G. Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPAR-γ and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33: 652–659 (2003)

    Article  CAS  Google Scholar 

  24. Karsenty G. Transcriptional control of skeletogenesis. Annu. Rev. Genom. Hum. G. 9: 183–196 (2008)

    Article  CAS  Google Scholar 

  25. Zhou J, Lin H, Fang T, Li X, Dai W, Uemura T. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials 31: 1171–1179 (2010)

    Article  CAS  Google Scholar 

  26. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A. Mechanical loading down-regulates peroxisome proliferator-activated receptor γ in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148: 2553–2562 (2007)

    Article  CAS  Google Scholar 

  27. Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR. Mechanically induced osteogenic differentiation — The role of RhoA, ROCKII, and cytoskeletal dynamics. J. Cell Sci. 122: 546–553 (2009)

    Article  CAS  Google Scholar 

  28. Ferro F, Falini G, Spelat R, D’Aurizio F, Puppato E, Pandolfi M. Biochemical and biophysical analyses of tissue-engineered bone obtained from three-dimensional culture of a subset of bone marrow mesenchymal stem cells. Tissue Eng. Pt. A 12: 3657–3667 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ung-Kyu Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bin, HS., Jeong, JH. & Choi, UK. Chlorogenic acid promotes osteoblastogenesis in human adipose tissue-derived mesenchymal stem cells. Food Sci Biotechnol 22 (Suppl 1), 107–112 (2013). https://doi.org/10.1007/s10068-013-0055-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0055-3

Keywords

Navigation