Skip to main content

Advertisement

Log in

Cartilage and bone tissue engineering for reconstructive head and neck surgery

  • Miscellaneous
  • Published:
European Archives of Oto-Rhino-Laryngology and Head & Neck Aims and scope Submit manuscript

Abstract

The loss of cartilage and bone because of congential defects, trauma and after tumor resection is a major clinical problem in head and neck surgery. The most prevalent methods of tissue repair are through autologous grafting or using implants. Tissue engineering applies the principles of engineering and life sciences in order to create bioartificial cartilage and bone. Most strategies for cartilage tissue engineering are based on resorbable biomaterials as temporary scaffolds for chondrocytes or precursor cells. Clinical application of tissue-engineered cartilage for reconstructive head and neck surgery as opposed to orthopedic applications has not been well established. While in orthopedic and trauma surgery engineered constructs or autologous chondrocytes are placed in the immunoprivileged region of joints, the subcutaneous transplant site in the head and neck can lead to strong inflammatory reactions and resorption of the bioartificial cartilage. Encapsulation of the engineered cartilage and modulation of the local immune response are potential strategies to overcome these limitations. In bone tissue engineering the combination of osteoconductive matrices, osteoinductive proteins such as bone morphogenetic proteins and osteogenic progenitor cells from the bone marrow or osteoblasts from bone biopsies offer a variety of tools for bone reconstruction in the craniofacial area. The utility of each technique is site dependent. Osteoconductive approaches are limited in that they merely create a favorable environment for bone formation, but do not play an active role in the recruitment of cells to the defect. Delivery of inductive signals from a scaffold can incite cells to migrate into a defect and control the progression of bone formation. Rapid osteoid matrix production in the defect site is best accomplished by using osteoblasts or progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a, b
Fig. 3
Fig. 4 a, b
Fig. 5 a, b

Similar content being viewed by others

References

  1. Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration and water content. J Bone Joint Surg Am 64:88–94

    CAS  PubMed  Google Scholar 

  2. Aulthouse AL, Beck M, Griffey, Sanford J, Arden K, Machado MA, Horton WA (1989) Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev Biol 25:659–668

    CAS  PubMed  Google Scholar 

  3. Benja PD, Schaffer JD (1978) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  Google Scholar 

  4. Beresford JN (1989) Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop 240:270–280

    PubMed  Google Scholar 

  5. Breitbart AS, Grande DA, Kessler R, Ryaby JT, Fitzsimmons RS, Grant RT (1998) Tissue engineering bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg 101:567–574

    Article  CAS  PubMed  Google Scholar 

  6. Brittberg M, Lindahl A, Nilson A, Ohlsson C, Isakson O, Peterson L (1994) Treatment of deep cartilage effects in the knee with autologous chondrocyte transplantation. N Eng J Med 331:889–895

    Article  CAS  Google Scholar 

  7. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  CAS  PubMed  Google Scholar 

  8. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg 80A: 985–996

    Google Scholar 

  9. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop 355 [Suppl]:S247–S256

  10. Buchholz RW, Carlton A, Holmes RE (1987) Hydoxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 18:323–334

    PubMed  Google Scholar 

  11. Bujía J, Alsalameh A, Sittinger M, Hammer C, Wilmes E, Burmester G (1994) Humoral immune response against minor collagens type IX and XI in patients with cartilage graft resorbtion after reconstructive surgery. Ann Rheum Dis 53:229–234

    CAS  Google Scholar 

  12. Burchardt H (1983) The biology of bone graft repair. Clin Orthop 174:28–42

    PubMed  Google Scholar 

  13. Castagnola P, Dozin B, Moro G, Cancedda R (1988) Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol 106:461–467

    Article  CAS  PubMed  Google Scholar 

  14. Celeste JA, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM (1990) Identification of transforming growth factor β family members present in bone-inductive protein puriefied from bovine bone. Proc Natl Acad Sci USA 87:9843–9847

    CAS  PubMed  Google Scholar 

  15. Dautzenberg H, Arnold G, Tiersch B, Lukanoff B, Eckert U (1996) Polyelectrolyte complex formation at the interface of solutions. Progr Coll Polymer Sci 101:149–156

    CAS  Google Scholar 

  16. Dautzenberg H, Stange J, Mintzer S, Lukanoff B (1996) Encapsulation by polyelectrolyte complex formation—a way to make hepatocyte cultures safe, efficient and available. Immobilized cells, basics and application in process in biotechnology. Elsevier Sci 11:181–188

    CAS  Google Scholar 

  17. Duda GN, Haisch A, Endres M, Gebert C, Schröder D, Hoffmann JE, Sittinger M (2000) Mechanical quality of tissue-engineered cartilage: Results after 6 and 12 weeks in vivo. J Biomed Mater Res 53:673–677

    Article  CAS  PubMed  Google Scholar 

  18. Haisch A, Schultz O, Perka C, Jahnke V, Burmester GR, Sittinger M (1996) Tissue Engineering humanen Knorpelgewebes für die rekonstruktive Chirurgie unter Verwendung biokompatibler resorbierbarer Fibringel- und Polymervliesstrukturen. HNO 44:624–629

    Article  CAS  PubMed  Google Scholar 

  19. Haisch A, Gröger A, Radke C, Ebmeyer J, Sudhoff H, Grasnick G, Jahnke V, Burmester GR, Sittinger M (2000) Resorptionsprotektion autogener Knorpeltransplantate durch Polyelektrolytkomplexmembranverkapselung. HNO 48:119–124

    Article  CAS  PubMed  Google Scholar 

  20. Haisch A, Kläring S, Gröger A, Gebert C, Sittinger M (2002) A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol 259:316–321

    PubMed  Google Scholar 

  21. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterisation of cells with osteogenic potential from human marrow. Bone 13:81–88

    CAS  PubMed  Google Scholar 

  22. Hill NM, Horne JG, Devane PA (1999) Donor site morbidity in the iliac crest bone graft. Aust N Z J Surg 69:726–728

    Article  CAS  PubMed  Google Scholar 

  23. Hollinger JO, Brekke J, Gruskin E, Lee D (1996) Role of bone substitutes. Clin Orthop 324:55–65

    Article  PubMed  Google Scholar 

  24. Ishizaki Y, Burne JF, Raff MC (1994) Autocrine signals enable chondrocytes to survive in culture. J Cell Biol 126:1069–1077

    Article  CAS  PubMed  Google Scholar 

  25. Jackson IT, Scheker LR, Vandervord JG, Mc Lennan JG (1981) Bone marrow grafting in the secondary closure of alveolar-palatal defects in children. Br J Plast Surg 34:422–425

    CAS  PubMed  Google Scholar 

  26. Kadiyala S, Jaiswal N, Bruder SP (1997) Culture-expanded, bone marrow-derived stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng 3:173–185

    Google Scholar 

  27. Khouri RK, Koudsi B, Reddi AH (1991) Tissue transformation into bone in vivo. JAMA 266:1953–1955

    CAS  PubMed  Google Scholar 

  28. Kübler NR, Reuther JF, Faller G, Kirchner T, Ruppert R, Sebald W (1998) Inductive properties of recombinant human BMP-2 produced in a bacterial expression system. Int J Oral Maxillofac Surg 27:305–309

    PubMed  Google Scholar 

  29. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CAS  PubMed  Google Scholar 

  30. Langer R (2000) Tissue engineering. Mol Ther 1:12–15

    Article  CAS  PubMed  Google Scholar 

  31. Marchisio PC, Capasso O, Nitsch I, Cancedda R, Gionti E (1984) Cytoskeleton and adhesion patterns of cultured chick embryo chondrocytes during cell spreading and Rous sarcoma virus transformation. Exp Cell Res 151:332–343

    CAS  PubMed  Google Scholar 

  32. Mayne R, Vail M, Mayne PM, Miller EJ (1976) Changes in the type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci USA 73:1674–1678

    CAS  PubMed  Google Scholar 

  33. Mulligan R (1993) The basic science of gene therapy. Science 260:926–932

    CAS  PubMed  Google Scholar 

  34. Nagata S (1994) Modification of the stages in total reconstruction of the auricle: Part I–IV. Plast Reconstr Surg 93:221–266

    CAS  PubMed  Google Scholar 

  35. Nakahara H, Bruder SP, Goldberg VM, Caplan AI (1989) In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Scand 259:223–232

    Google Scholar 

  36. Naumann A, Bujía J, Hammer C, Wilmes E (1994) Autoantibodies against cartilage components: Clinical relevance for head and neck surgery. Laryngo Rhino Otol 73:253–257

    CAS  Google Scholar 

  37. Nogami H, Urist MR (1975) Transmembrane bone matrix gelatin-induced differentiation of bone. Calcif Tissue Res 19:153–163

    CAS  PubMed  Google Scholar 

  38. Özkaynak E, Rueger DC, Drier EA, Corbett C, Ridge RJ, Sampath TK, Oppermann H (1990) OP-1 cDNA encodes an osteogenic protein in the TGF-β family. EMBO J 9:2085–2093

    Google Scholar 

  39. Ohgushi H, Goldberg VM, Caplan AI (1989) Repair of bone defects with marrow cells and porous ceramics. Acta Orthop Scand 60:334–339

    CAS  PubMed  Google Scholar 

  40. Park SS. Reconstruction of nasal defects larger than 1,5 centimeters in diameter (2000) Laryngoscope 110:1241–1250

    Article  CAS  PubMed  Google Scholar 

  41. Peiseler B (2001) Ohrmuscheln und Gelenke aus Zellkultur. Baseler Zeitung 16:55–57

    Google Scholar 

  42. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  43. Psillakis JM, Nocchi VLB, Zanini SA (1979) Repair of large defects of frontal bone with free graft of outer table of parietal bones. Plast Reconstr Surg 64:827–830

    CAS  PubMed  Google Scholar 

  44. Puelacher WC, Wisser J, Vacanti CA, Ferraro NF, Jaramillo D, Vacanti JP (1994) Temporomandibular joint disc replacement made by tissue engineered growth of cartilage. J Oral Maxillofac Surg 52:1172–1177

    CAS  PubMed  Google Scholar 

  45. Puelacher WC, Mooney D, Langer R, Upton J, Vacanti JP, Vacanti CA (1994) Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials 15:774–778

    Article  CAS  PubMed  Google Scholar 

  46. Reddi AH (1997) Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev 8:11–20

    Article  CAS  PubMed  Google Scholar 

  47. Rettinger G (1992) Autogene und allogene Knorpeltransplantate in der Kopf- und Halschirurgie (ohne Mittelohr und Trachea). Eur Arch Otorhinolaryngol [Suppl] 1:127–162

    Google Scholar 

  48. Reuther JF, Kübler NR (1999) Die Wiederherstellung des Unterkiefers. Dt Ärztbl 96:A-1054–1061

    Google Scholar 

  49. Rotter N, Sittinger M, Hammer C, Bujía J, Kastenbauer E (1997) Transplantation in vitro hergestellter Knorpelmaterialien: Charakterisierung der Matrixsynthese. Laryngo Rhino Otol 76:241–247

    CAS  Google Scholar 

  50. Rotter N, Aigner J, Naumann A, Planck H, Hammer C, Burmester G, Sittinger M (1998) Cartilage reconstruction in head and neck surgery: Comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage. Biomed Mater Res 42:347–356

    Article  CAS  PubMed  Google Scholar 

  51. Sanan AS, Haines SJ (1997) Repairing holes in the head: A history of cranioplasty. Neurosurgery 40:588–603

    Article  CAS  PubMed  Google Scholar 

  52. Schick B, Hendus J, Abd El Rahman EL Tahan, Draf W (1998) Rekonstruktion der Stirnregion mit Tabula externa des Schädels. Laryngo Rhino Otol 77:474–479

    CAS  Google Scholar 

  53. Sittinger M, Buija J, Rotter N, Reitzel D, Minuth WW, Burmester GR (1996) Tissue engineering and autologous transplant formation: Practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials 17:237–242

    Article  CAS  PubMed  Google Scholar 

  54. Sittinger M, Bräunling J, Kastenbauer E, Hammer C, Burmester G, Bujía J (1997) Untersuchungen zum Vermehrungspotential von Nasenseptum-Chondrozyten für die in vitro-Züchtung von Knorpeltransplantaten. Laryngo Rhino Otol 76:96–100

    CAS  Google Scholar 

  55. Terheyden H, Jepsen S, Rueger DR (1999) Mandibular reconstruction in miniature pigs with prefabricated vascularized bone grafts using recombinant human osteogenic protein-1: a preliminary study. Int J Oral Maxillofacial Surg 28:461–463

    Article  CAS  Google Scholar 

  56. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    CAS  PubMed  Google Scholar 

  57. Urist MR, Granstein R, Nogami H, Svenson L, Murphy R (1977) Transmembrane bone morphogenesis across multiple-walled diffusion chambers. Arch Surg 112:612–619

    CAS  PubMed  Google Scholar 

  58. Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88:753–759

    CAS  PubMed  Google Scholar 

  59. Vacanti CA, Cima LG, Ratkowski D (1992) Tissue engineering growth of new cartilage in the shape of a human ear using synthetic polymers seeded with chondrocytes. Mat Res Soc Symp Proc 252:367–374

    CAS  Google Scholar 

  60. Vacanti CA, Paige KT, Kim WS, Sakata J, Upton J, Vacanti JP (1994) Experimental tracheal replacement using tissue engineered cartilage. J Pediatr Surg 29:201–205

    Article  CAS  PubMed  Google Scholar 

  61. Von der Mark K, Gauss B, von der Mark H, Müller P (1977) Relationship between shape and type of collagen synthesized as chondrocytes lose their cartilage pheonotype in culture. Nature 267:531–532

    PubMed  Google Scholar 

  62. Werntz JR, Lane JM, Burstein AH, Justin R, Klein R, Tomin E (1996) Qualitative and quantitative analysis of orthotopic bone regeneration by marrow. J Orthop Res 14:85–93

    CAS  PubMed  Google Scholar 

  63. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bücheler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotter, N., Haisch, A. & Bücheler, M. Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol 262, 539–545 (2005). https://doi.org/10.1007/s00405-004-0866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-004-0866-1

Keywords

Navigation