Skip to main content

Advertisement

Log in

Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Bioactive polysaccharides are a promising way for bone disease prevention with high efficiency. Schizophyllan (SPG) is a polysaccharide derived from a species of fungus with anticancer, antitumor, and anti-inflammatory effects. In the present study, for the first time, the cell proliferation, osteogenic markers, mineral deposition, and osteogenic gene expression of human adipose tissue-derived mesenchymal stem cells (hADMSCs) grown on SPG were evaluated by in vitro assays.

Methods and results

The cytotoxicity of SPG was measured using the MTT assay and acridine orange staining. Differentiation of hADMSCs was assessed using alkaline phosphatase (ALP) activity test, cellular calcium content assay, and mineralized matrix staining. To this end, Alizarin red S, von Kossa staining, and the expression of bone-specific markers, including ALP, Runx2, and osteonectin, were used by real-time RT-PCR over a 2-week period. According to the results, SPG at 10 µg/ml concentration was determined as the optimal dosage for differentiation studies. The results of osteogenic differentiation tests showed that compared to the control groups in vitro, SPG enhanced the osteogenic markers and mineralization as well as upregulation of the expression of bone specific genes in differentiated hADMSCs during differentiation.

Conclusions

The results revealed that SPG could be applied as effective factor for osteogenic differentiation in the future. The current study provides insights into the hADMSC-based treatment and introduces promising therapeutic material for individuals who suffer from bone defects and injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The main data supporting the results of this study are available within the paper. The raw datasets are available for research purposes from the corresponding author at reasonable request.

References

  1. Helmi SA, Rohani L, Zaher AR, El Hawary YM, Rancourt DE (2021) Enhanced osteogenic differentiation of pluripotent stem cells via γ-secretase inhibition. Int J Mol Sci. https://doi.org/10.3390/ijms22105215

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vidoni C, Ferraresi A, Secomandi E, Vallino L, Gardin C, Zavan B, Mortellaro C, Isidoro C (2019) Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun Signal 17:98

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salimi A, Ghiasi M, Korani M, Karimi Zarchi AA (2021) Involved molecular mechanisms in stem cells differentiation into chondrocyte: a review. J Appl Biotechnol Rep 8:234–241

    CAS  Google Scholar 

  4. Meyer MB, Benkusky NA, Sen B, Rubin J, Pike JW (2016) Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J Biol Chem 291:17829–17847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moreno JS, Sabbieti MG, Agas D, Marchetti L, Panero S (2014) Polysaccharides immobilized in polypyrrole matrices are able to induce osteogenic differentiation in mouse mesenchymal stem cells. J Tissue Eng Regen Med 8:989–999

    Article  PubMed  Google Scholar 

  6. Han L, Wang B, Wang R, Gong S, Chen G, Xu W (2019) The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther 10:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akkawi I, Draghetti M, Zmerly H (2022) Minimally manipulated adipose derived mesenchymal stromal cells and osteoarthritis: a narrative review. Acta Bio-medica: Atenei Parmensis 93:e2022135

    PubMed  Google Scholar 

  8. Masoumi N, Ghollasi M, Raheleh H, Eftekhari E, Ghiasi M (2023) Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regener Ther 23:60–66

    Article  CAS  Google Scholar 

  9. Almalki SG, Agrawal DK (2016) Key transcription factors in the differentiation of mesenchymal stem cells. Differ Res Biol Divers 92:41–51

    CAS  Google Scholar 

  10. Mikłosz A, Nikitiuk BE, Chabowski A (2022) Using adipose-derived mesenchymal stem cells to fight the metabolic complications of obesity: where do we stand? Obes Rev 23:e13413

    Article  PubMed  PubMed Central  Google Scholar 

  11. Soraya Z, Ghollasi M, Halabian R, Eftekhari E, Tabasi A, Salimi A (2021) Donepezil hydrochloride as a novel inducer for osteogenic differentiation of mesenchymal stem cells on PLLA scaffolds in vitro. Biotechnol J. https://doi.org/10.1002/biot.202100112

    Article  PubMed  Google Scholar 

  12. Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G (2019) Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci. https://doi.org/10.3390/ijms20205092

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ojogbo E, Ogunsona EO, Mekonnen TH (2020) Chemical and physical modifications of starch for renewable polymeric materials. Mater Today Sustain 7–8:100028

    Article  Google Scholar 

  14. Teixeira-Costa BE, Andrade CT (2022) Natural polymers used in edible food packaging—history, function and application trends as a sustainable alternative to synthetic plastic. Polysaccharides 3:32–58

    Article  CAS  Google Scholar 

  15. Witzler M, Büchner D, Shoushrah SH, Babczyk P, Baranova J, Witzleben S, Tobiasch E, Schulze M (2019) Polysaccharide-based systems for targeted stem cell differentiation and bone regeneration. Biomolecules. https://doi.org/10.3390/biom9120840

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mohammadi A, Shojaosadati SA, Tehrani HJ, Mousavi SM, Saleh T, Khorasani AC (2018) Schizophyllan production by newly isolated fungus Schizophyllum commune IBRC-M 30213: optimization of culture medium using response surface methodology. Ann Microbiol 68:47–62

    Article  CAS  Google Scholar 

  17. Kozarski M, Klaus A, Niksic M, Jakovljevic D, Helsper JP, Van Griensven LJ (2011) Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem 129:1667–1675

    Article  CAS  Google Scholar 

  18. Du B, Lin C, Bian Z, Xu B (2015) An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Technol 41:49–59

    Article  CAS  Google Scholar 

  19. Lee S, Ki CS (2020) Inflammatory responses of macrophage-like RAW264.7 cells in a 3D hydrogel matrix to ultrasonicated Schizophyllan. Carbohydr Polym 229:115555

    Article  CAS  PubMed  Google Scholar 

  20. Tu L, Fan Y, Deng Y, Hu L, Sun H, Zheng B, Lu D, Guo C, Zhou L (2023) Production and anti-inflammatory performance of PVA hydrogels loaded with curcumin encapsulated in octenyl succinic anhydride modified Schizophyllan as wound dressings. Molecules 28:1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Du B, Yang Y, Bian Z, Xu B (2017) Characterization and anti-inflammatory potential of an exopolysaccharide from submerged mycelial culture of Schizophyllum commune. Front Pharmacol 8:252

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Kong H, Fang Y, Nishinari K, Phillips GO (2013) Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydr Diet Fibre 1:53–71

    Article  CAS  Google Scholar 

  23. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196:80–89

    Article  CAS  PubMed  Google Scholar 

  24. Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R, Simpson H, Alt V (2014) Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury 45:S3–S7

    Article  PubMed  Google Scholar 

  25. Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O (2020) Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. https://doi.org/10.3390/ijms21093242

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eftekhari E, Ghollasi M, Halabian R, Soltanyzadeh M, Enderami SE (2021) Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Hum Cell. https://doi.org/10.1007/s13577-021-00537-9

    Article  PubMed  Google Scholar 

  27. Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng SW (2019) Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci. https://doi.org/10.3390/ijms20205015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rabizadeh F, Mirian MS, Doosti R, Kiani-Anbouhi R, Eftekhari E (2022) Phytochemical classification of medicinal plants used in the treatment of kidney disease based on traditional Persian medicine. Evid-Based Complement Altern Med. https://doi.org/10.1155/2022/8022599

    Article  Google Scholar 

  29. Abdel-Mohsen A, Abdel-Rahman RM, Fouda MM, Vojtova L, Uhrova L, Hassan A, Al-Deyab SS, El-Shamy IE, Jancar J (2014) Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydr Polym 102:238–245

    Article  CAS  PubMed  Google Scholar 

  30. Zhou B, Fu Q, Song S-S, Zheng H-L, Wei Y-Z (2015) Inhibitory effect of schizophyllan on rat glioma cells. Bangladesh J Pharmacol 10:759–764

    Article  Google Scholar 

  31. Yao XW, Liu HD, Ren MX, Li TL, Jiang WK, Zhou Z, Liu ZY, Yang M (2022) Aloe polysaccharide promotes osteogenesis potential of adipose-derived stromal cells via BMP-2/Smads and prevents ovariectomized-induced osteoporosis. Mol Biol Rep 49:11913–11924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng X, He J, Zhao J, Wu Y, Shi X, Du L, Nong M, Zong S, Zeng G (2018) Polygonatum sibiricum polysaccharide promotes osteoblastic differentiation through the ERK/GSK-3 β/β-catenin signaling pathway in vitro. Rejuvenation Res 21:44–52

    Article  CAS  PubMed  Google Scholar 

  33. Kyllönen L, Haimi S, Mannerström B, Huhtala H, Rajala KM, Skottman H, Sándor GK, Miettinen S (2013) Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Res Ther 4:17

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li X, Zhang Q, Zhu Y, Li Y, Mei S, Luo H, Wu K (2022) Structural characterization of a mannoglucan polysaccharide from Dendrobium huoshanense and evaluation of its osteogenesis promotion activities. Int J Biol Macromol 211:441–449

    Article  CAS  PubMed  Google Scholar 

  35. Yang ZB, Tsuchiya Y, Arika T, Hosokawa M (1993) Inhibitory effects of sizofiran on anticancer agent- or X-ray-induced sister chromatid exchanges and mitotic block in murine bone marrow cells. Jpn J Cancer Res 84:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu D (1987) Recent advances on the active components in Chinese medicines. Abstr Chin Med 1:251–286

    Google Scholar 

  37. Rosset EM, Bradshaw AD (2016) SPARC/osteonectin in mineralized tissue. Matrix Biol 52–54:78–87

    Article  PubMed  PubMed Central  Google Scholar 

  38. Taipaleenmäki H, Abdallah BM, AlDahmash A, Säämänen A-M, Kassem M (2011) Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Exp Cell Res 317:745–756

    Article  PubMed  Google Scholar 

  39. Chen X-J, Shen Y-S, He M-C, Yang F, Yang P, Pang F-X, He W, Cao Y-M, Wei Q-S (2019) Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother 112:108746

    Article  CAS  PubMed  Google Scholar 

  40. Yan C-P, Wang X-K, Jiang K, Yin C, Xiang C, Wang Y, Pu C, Chen L, Li Y-L (2022) β-ecdysterone enhanced bone regeneration through the BMP-2/SMAD/RUNX2/osterix signaling pathway. Front Cell Dev Biol 10:883228

    Article  PubMed  PubMed Central  Google Scholar 

  41. Salazar VS, Ohte S, Capelo LP, Gamer L, Rosen V (2016) Specification of osteoblast cell fate by canonical Wnt signaling requires Bmp2. Development (Cambridge, England) 143:4352–4367

    CAS  PubMed  Google Scholar 

  42. Qian C, Zhu C, Yu W, Jiang X, Zhang F, Sun J (2016) Bone morphogenetic protein 2 promotes osteogenesis of bone marrow stromal cells in type 2 diabetic rats via the Wnt signaling pathway. Int J Biochem Cell Biol 80:143–153

    Article  CAS  PubMed  Google Scholar 

  43. Vimalraj S, Arumugam B, Miranda P, Selvamurugan N (2015) Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol 78:202–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Clinical Research Development Center of Baqiyatallah Hospital for their technical support. Also, we thank Ms. Elahe Eftekhari for her assistance with this project.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by SH. All authors read and commented on manuscript. Conceptualization: AS; methodology: AZ, SH; analysis and investigation: SH, RH, MG; writing original draft preparation: SH; editing: SH, AS; resources: SH; supervision: AS, AZ.

Corresponding author

Correspondence to Ali Salimi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The ADMSCs were purchased from the cell bank of the Stem Cells Research Center, Tehran, Iran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemati, S., Hatamian-Zarmi, A., Halabian, R. et al. Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 50, 10037–10045 (2023). https://doi.org/10.1007/s11033-023-08877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08877-5

Keywords

Navigation