Skip to main content
Log in

Metabolic precursors and cofactors stimulate astaxanthin production in Paracoccus MBIC 01143

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This work investigates bacterial production of astaxanthin as an alternative to production by algae and yeast owing to its lower incubation time and simpler downstream processing. The physical parameters and medium composition were optimized for astaxanthin production by Paracoccus MBIC 01143. The optimized media was supplemented with tricarboxylic acid intermediates to enhance the pool of precursors, while the cofactors of Crt enzymes (ferrous sulphate, ascorbate, NADPH, ATP, and 2-oxoglutarate) were added to stimulate their enzyme activity aiming at higher astaxanthin accumulation. Malate at 5 mM and ferrous sulphate at 1 mM increased the astaxanthin production from 177 to 3,750 μg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandmann G, Albrecht M, Schnurr G, Knörzer O, Börer P. The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol. 17: 233–237 (1999

    Article  CAS  Google Scholar 

  2. Bhosale P, Bernstein PS. Microbial xanthophylls. Appl. Microbiol. Biot. 68: 445–455 (2005)

    Article  CAS  Google Scholar 

  3. Kamata T, Simpson KL. Study of astaxanthin diester extracted from Adonis aestivalis. Comp. Biochem. Phys. B 86: 587–591 (1987)

    Article  Google Scholar 

  4. Ruen-ngam D, Shotipruk A, Pavasant P. Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Separ. Sci. Technol. 46: 64–70 (2011)

    Article  CAS  Google Scholar 

  5. Yokoyama A, Izumida H, Miki W. Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci. Biotech. Bioch. 58: 1842–1844 (1994)

    Article  CAS  Google Scholar 

  6. Harker M, Hirschberg J, Oren A. Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int. J. Syst. Bacteriol. 48: 543–548 (1998)

    Article  Google Scholar 

  7. Tsubokura A, Yoneda H, Mizuta H. Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int. J. Syst. Bacteriol. 49: 277–282 (1999)

    Article  CAS  Google Scholar 

  8. Lee JH, Kim YS, Choi TJ, Lee WJ, Kim YT. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthinproducing bacterium. Int. J. Syst. Evol. Micr. 4: 1699–1702 (2004)

    Article  Google Scholar 

  9. Asker D, Beppu T, Ueda K. Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol. Lett. 273: 140–148 (2007)

    Article  CAS  Google Scholar 

  10. Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J. Bacteriol. 11: 6575–6584 (1995)

    Google Scholar 

  11. Fraser PD, Miura Y, Misawa N. In vitro characterization of astaxanthin biosynthetic enzymes. J. Biol. Chem. 272: 6128–6135 (1997)

    Article  CAS  Google Scholar 

  12. MacLeo RA, Onofrey E, Norris M. Nutrition and metabolism of marine bacteria. I. Survey of nutritional requirements. J. Bacteriol. 68: 680–686 (1954)

    Google Scholar 

  13. Bhosale P, Gadre RV. Production of β-carotene by a Rhodotorula glutinis mutant in seawater medium. Bioresource Technol. 76: 53–55 (2001)

    Article  CAS  Google Scholar 

  14. Durmaz Y, Donato M, Monteiro M, Gouveia L, Nunes ML, Gama Pereira T, Gökpinar Ş, Bandarra NM. Effect of temperature on α-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquacult. Int. 17: 391–399 (2009)

    Article  CAS  Google Scholar 

  15. Bhosale P, Gadre RV. Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant 32 of Rhodotorula glutinis. Lett. Appl. Microbiol. 34: 349–353 (2002)

    Article  CAS  Google Scholar 

  16. Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biot. 63: 351–361 (2004)

    Article  CAS  Google Scholar 

  17. Zhang DH, Lee YK, Ng ML, Phang SM. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J. Appl. Phycol. 9: 147–155 (1997)

    Article  CAS  Google Scholar 

  18. Liu Y-S, Wu J-Y, Ho K-P. Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem. Eng. J. 27: 331–335 (2006)

    Article  Google Scholar 

  19. Fakas S, Makri A, Bellou S, Aggelis G. Pathways to aerobic glycerol catabolism and their regulation. pp. 9–18. In: Microbial Conversions of Raw Glycerol. Aggelis G (ed). Nova Science Publishers, New York, NY, USA (2009)

    Google Scholar 

  20. Kusdiyantini E, Gaudin P, Goma G, Blanc PJ. Growth kinetics and astaxanthin production of Phaffia rhodozyma on glycerol as a carbon source during batch fermentation. Biotechnol. Lett. 20: 929–934 (1998)

    Article  CAS  Google Scholar 

  21. Masojídek J, Torzillo G, Kopecky J, Koblžek M, Nidiaci L, Komenda J, Lukavská A, Sacchi, A. Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J. Appl. Phycol. 12: 417–426 (2000)

    Article  Google Scholar 

  22. Withers ST, Keasling JD. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biot. 73: 980–990 (2007)

    Article  CAS  Google Scholar 

  23. Bhosale P, Larson J, Bernstein S. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. J. Appl. Microbiol. 96: 623–629 (2004)

    Article  CAS  Google Scholar 

  24. Nasri Nasrabadi MR, Razavi SH. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. J. Biosci. Bioeng. 109: 361–368 (2010)

    Article  Google Scholar 

  25. Alcantara S, Sanchez S. Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis. J. Ind. Microbiol. Biot. 23: 697–700 (1999)

    Article  CAS  Google Scholar 

  26. An G-H. Improved growth of the red yeast, Phaffia rhodozyma (Xanthophyllomyces dendrorhous), in the presence of tricarboxylic acid cycle intermediates. Biotechnol. Lett. 23: 1005–1009 (2001)

    Article  CAS  Google Scholar 

  27. Domínguez-Bocanegra AR, Ponce-Noyola T, Torres-Muñoz JA. Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: A comparative study. Appl. Microbiol. Biot. 75: 783–791 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha S. Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chougle, J.A., Singhal, R.S. Metabolic precursors and cofactors stimulate astaxanthin production in Paracoccus MBIC 01143. Food Sci Biotechnol 21, 1695–1700 (2012). https://doi.org/10.1007/s10068-012-0225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0225-8

Keywords

Navigation