Skip to main content
Log in

Prevalence and characterization of foodborne bacteria from meat products in Korea

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the distribution of Salmonella spp., Escherichia coli, Staphylococcus aureus, Campylobacter jejuni, and Vibrio parahaemolyticus in raw meat products in Korea were investigated. A total of 155 meat products consisting of 52 beef, 62 pork, and 41 chicken were purchased randomly from 41 stores located in 5 different Korean provinces. E. coli and S. aureus were detected in 37.4 and 33.5% of the samples. Salmonella spp., C. jejuni, and V. parahaemolyticus were not detected. More than 30% of S. aureus were found to be enterotoxin producers and these organisms primarily possessed type A toxin genes. Conversely, verocytotoxin producing E. coli were not detected. Taken together, these results indicate that consumption of raw meat products may pose a risk of foodborne disease and that good hygienic practices should be required to ensure public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AMAP. AMAP Assessment 2002: Human Health in the Arctic. Arctic Monitoring and Assessment Programme. Oslo, Norway. p. 137 (2003)

    Google Scholar 

  2. Blaiotta G, Ercolini D, Pennacchia C, Fusco V, Casaburi A, Pepe O, Villani F. PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J. Appl. Microbiol. 97: 719–730 (2004)

    Article  CAS  Google Scholar 

  3. Bonardi S, Paris A, Bassi L, Salmi F, Bacc C, Riboldi E, Boni E, Díncau M, Tagliabue S, Brindani F. Detection, semiquantitative enumeration, and antimicrobial susceptibility of Yersinia enterocolitica in pork and chicken meats in Italy. J. Food Protect. 73: 1785–1792 (2010)

    CAS  Google Scholar 

  4. Barlow RS, Mellor GE. Prevalence of enterohemorrhagic Escherichia coli serotypes in Australian beef cattle. Foodborne Pathog. Dis. 7: 1239–1245 (2010)

    Article  CAS  Google Scholar 

  5. Weese JS, Avery BP, Reid-Smith RJ. Detection and quantification of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett. Appl. Microbiol. 3: 338–342 (2010)

    Article  Google Scholar 

  6. Lee GY, Jang HI, Hwang IG, Rhee MS. Prevalence and classification of pathogenic Escherichia coli isolated from fresh beef, poultry, and pork in Korea. Int. J. Food Microbiol. 134: 196–200 (2009)

    Article  CAS  Google Scholar 

  7. Xia X, Meng J, Zhao S, Bodeis-Jones S, Gaines SA, Ayers SL, McDermott PF. Identification and antimicrobial resistance of extraintestinal pathogenic Escherichia coli from retail meats. J. Food Protect. 74: 38–44 (2011)

    Article  CAS  Google Scholar 

  8. Hanson BM, Dressler AE, Harper AL, Scheibel RP, Wardyn SE, Roberts LK, Kroeger JS, Smith TC. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J. Infect. Public Health 4: 169–174 (2011)

    Article  CAS  Google Scholar 

  9. Hamidi A, Sherifi K, Muji S, Behluli B, Latifi F, Robaj A, Postoli R, Hess C, Hess M, Sparagano O. Dermanyssus gallinae in layer farms in Kosovo: A high risk for Salmonella prevalence. Parasite 4: 136–138 (2011)

    Google Scholar 

  10. Lutgen EM, McEvoy JM, Sherwood JS, Logue CM. Antimicrobial resistance profiling and molecular subtyping of Campylobacter spp. from processed turkey. BMC Microbial. 9: 203 (2009)

    Article  Google Scholar 

  11. KFDA. Food Code. Korea Food and Drug Administration, Cheongwon, Korea (2008)

    Google Scholar 

  12. Lopez-Saucedo C, Cerna JF, Villegas-Sepulveda N, Thompson R, Velazquez FR, Torres J, Tarr PI, Estrada-Garcia T. Singlie multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerg. Infect. Dis. 9: 127–131 (2003)

    Article  CAS  Google Scholar 

  13. Rose JP, Giguard O. Staphylococcal enterotoxin genes of classical and new type detected by PCR in France. J. Food Microbiol. 77: 61–70 (2002)

    Article  Google Scholar 

  14. Jung HJ, Cho JI, Park SH, Ha SD, Lee KH, Kim CH, Song ES, Chung DH, Kim MG, Kim KY, Kim KS. Genotypic and phenotypic characteristics of Staphylococcus aureus isolated from lettuces and milk. Korean J. Food Sci. Technol. 37: 134–141 (2005)

    Google Scholar 

  15. Robins-Browne RM, Hartland EL. Escherichia coli as a cause of diarrhea. J. Gastroenterol. Hepatol. 17: 467–475 (2002)

    Article  CAS  Google Scholar 

  16. Levine MM. Escherichia coli that cause diarrhea: Enterotoxigenic, enteripathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 155: 377–389 (1987)

    Article  CAS  Google Scholar 

  17. Griffin PM, Ostroff SM, Tauxe RV, Greene KD, Wells JG, Lewis JH, Blake PA. Illnesses associated with Escherichia coli O157:H7 infections. A broad clinical spectrum. Ann. Intern. Med. 109: 705–712 (1988)

    CAS  Google Scholar 

  18. Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527–543 (1998)

    Article  CAS  Google Scholar 

  19. Morandi S, Brasca M, Andrighetto C, Lombardi A, Lodi R. Phenotypic and genotypic characterization of Staphylococcus aureus strains from Italian dairy products. Intern. J. Microbiol. doi:10.1155/ 2009/501362 (2009)

  20. Kelman A, Soong YA, Dupuy N, Shafer D, Richbourg W, Johnson K, Brown T, Kestler E, Li Y, Zheng J, McDermott P, Meng J. Antimicrobial susceptiblility of Staphylococcus aureus from retail ground meats. J. Food Protect. 74: 1625–1629 (2011)

    Article  CAS  Google Scholar 

  21. Smyth CJ, Smyth DS, Kennedy J, Twohig J, Bolton DJ. Staphylococcus aureus: From man or animal — an enterotoxin icegerg? National Food Centre 2004: 85–102 (2004)

    Google Scholar 

  22. Bennett RW, Yeterian M, Smith W, Coles CM, Sassaman M, Mcclure FD. Staphylococcus aureus identification characteristics and enterotoxigenicity. J. Food Sci. 51: 1339–1377 (1986)

    Article  Google Scholar 

  23. Bae YM, Hong YJ, Kang DH, Heu SG, Lee SY. Microbial and pathogenic contamination of ready-to-eat fresh vegetables in Korea. Korean J. Food Sci. Technol. 43: 161–168 (2011)

    Google Scholar 

  24. Korea Food and Drug Administration. Available from: http://www.kfda.go.kr. Accessed Nov. 13, 2011.

  25. Lim JS, Yoon JH, Min BK, Hong WK. Detection and identification of shiga-like toxin producing E. coli O157:H7 by multiplex PCR. Food Eng. 12: 8–14 (2008)

    Google Scholar 

  26. Bugapel M, Martin A, Fach P, Beutin L. Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains: A basis for molecular risk assessment of typical and atypical EPEC strains. BMC Microbiol. 11: 142–151 (2011)

    Article  Google Scholar 

  27. Donnenberg MS, Whittam TS. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J. Clin. Invest. 107: 539–548 (2001)

    Article  CAS  Google Scholar 

  28. Andersson T, Nilsson C, Kjellin E, Toljander J, Wekinder-olsson C, Lindmark H. Modeling gene associations for virulence classification of verocytotoxin-producing E. coli (VTEC) from patients and beef. Virulence 2: 41–53 (2011)

    Article  Google Scholar 

  29. Ihekwazu C, Carroll K, Adak B, Smith G, Pritchard GC, Gillespie IA, Verlander NQ, Harvey-vince L, Reacher M, Edeghere O, Sultan B, Cooper R, Morgan G, Kinross PT, Boxall NS, Iversen A, Bickler G. Large outbreak of verocytotoxin-producing Escherichia coli O 157 infection in visitors to a petting farm in south east England, 2009. Epidemiol. Infect. 140: 1400–1413 (2011)

    Article  Google Scholar 

  30. Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 29: 426–430 (1991)

    CAS  Google Scholar 

  31. Cergole-novella MC, Nishimura LS, Dos Santos LF, Irino K, Vaz TM, Bergamini AM, Guth BE. Distribution of virulence profiles related to new toxins and putative adhesins in Shiga toxin-producing Escherichia coli isolated from diverse sources in Brazil. FEMS Microbiol. Lett. 274: 329–334 (2007)

    Article  CAS  Google Scholar 

  32. Ikeda T, Tamate N, Ysmsguchi K, Mskino S. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H. Appl. Environ. Microb. 71: 2793–2795 (2005)

    Article  CAS  Google Scholar 

  33. Fernandez MM, Guan R, Swaminathan CP, Malchiodi EL, Mariuzza RA. Crystal structure of staphylococcal enterotoxin I (SEI) in complex with a human major histocompatibility complex class II molecule. J. Biol. Chem. 281: 25356–25364 (2006)

    Article  CAS  Google Scholar 

  34. Betley MJ, Borst DW, Regassa LB. Staphylococcal enterotoxins, toxic shock syndrome toxin, and streptococcal pyrogenic exotoxins: A comparative study of their molecular biology. Chem. Immunol. 55: 1–35 (1992)

    Article  CAS  Google Scholar 

  35. Varshney AK, Mediavilla JR, Robiou N, Guh A, Wang X, Gialanella P, Levi MH, Kreiswirth BN, Fries BC. Diverse enterotoxin gene profiles among clonal complexes of Staphylococcus aureus isolates from the Bronx, New York. Appl. Environ. Microb. 75: 6839–6849 (2009)

    Article  CAS  Google Scholar 

  36. Grumann D, Scharf SS, Holtfreter S, Kohler C, Steil L, Engelmann S, Hecker M, Volker U, Broker BM. Immune cell activation by enterotoxin gene cluster (egc)-encoded and non-egc superantigens from Staphylococcus aureus. J. Immunol. 181: 5054–5061 (2008)

    CAS  Google Scholar 

  37. Pinchuk IV, Beswick EJ, Saada JI, Suarez G, Winston J, Mifflin RC, Di Mari JF, Powell DW, Reyes VE. Monocyte chemoattractant protein-1 production by intestinal myofibroblasts in response to staphylococcal enterotoxin a: Relevance to staphylococcal enterotoxigenic disease. J. Immunol. 178: 8097–8106 (2007)

    CAS  Google Scholar 

  38. Betley MJ, Soltis MT, Couch JL. Molecular biological analysis of staphylococcal enterotoxin genes. pp. 327–342. In: Milecular Biology of the Staphylococci. Novick RP, Skurray R (eds). VCH Publishers Inc., New York, NY, USA (1990)

    Google Scholar 

  39. Rajagopalan G, Sen MM, Singh M, Murali NS, Nath KA, Iijima K, Kita H, Leontovich AA, Gopinathan U, Patel R, David CS. Intranasal exposure to staphylococcal enterotoxin B elicits an acute systemic inflammatory response. Shock 25: 647–656 (2006)

    Article  CAS  Google Scholar 

  40. Wallin-Carlquist N, Cao R, Marta D, Santana Da Silva A, Schelin J, Radstrom P. Acetic acid increases the phage-encoded enterotoxin A expression in Staphylococcus aureus. BMC Microbiol. 10: 174–186 (2010)

    Article  Google Scholar 

  41. Kim SR, Shim WB, Kim JH, Hwang SJ, Park SJ, Ha SD, Kim KS, Lee KH, Kim MG, Kim KY, Lim CH, Chung DH. Screening of Staphylococcus aureus and staphylococcal enterotoxin a, b, c genes in strain isolated from strawberry farms in western Gyeongnam. Korean J. Food Sci. Technol. 37: 321–327 (2005)

    Google Scholar 

  42. Cho YS, Lee JY, Lee MK, Shin BB, Kim DH, Park KM. Prevalence and characterization of Staphylococcus aureus pathogenic factors isolated from various foods in Korea. Korean J. Food Sci. Technol. 43: 648–654 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Gyun Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J.I., Joo, I.S., Choi, J.H. et al. Prevalence and characterization of foodborne bacteria from meat products in Korea. Food Sci Biotechnol 21, 1257–1261 (2012). https://doi.org/10.1007/s10068-012-0165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0165-3

Keywords

Navigation